in

Negative frequency-dependent selection and asymmetrical transformation stabilise multi-strain bacterial population structures

  • 1.

    Russell JB. Discussion on diphtheria. BMJ. 1891;2:631–40.

    Article  Google Scholar 

  • 2.

    Joseph FH. Notes on some pathogenic bacteria as found in the Transvaal, and the variations from their European prototype. Rep. S Afr Assoc Adv Sci. 1904;2:237–42.

    Google Scholar 

  • 3.

    Eyre JW, Washbourn JW. Varities and virulence of the pneumococcus. Lancet. 1899;153:19–22.

    Article  Google Scholar 

  • 4.

    Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ, Corander J, et al. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine. 2019;43:338–46.

    PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Colijn C, Corander J, Croucher NJ. Designing ecologically optimized pneumococcal vaccines using population genomics. Nat Microbiol. 2020;5:473–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccination. Lancet. 2011;378:1962–73.

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Lefevre JC, Faucon G, Sicard AM, Gasc AM. DNA fingerprinting of Streptococcus pneumoniae strains by pulsed-field gel electrophoresis. J Clin Microbiol. 1993;31:2724 LP–8.

    Article  Google Scholar 

  • 8.

    Selander RK, Levin BR. Genetic diversity and structure in Escherichia coli populations. Science. 1980;210:545–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Smith JM, Smith NH, O’Rourke M, Spratt BG. How clonal are bacteria? Proc Natl Acad Sci USA. 1993;90:4384–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA. 1998;95:3140–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Smith JM, Feil EJ, Smith NH. Population structure and evolutionary dynamics of pathogenic bacteria. BioEssays. 2000;22:1115–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Croucher NJ, Coupland PG, Stevenson AE, Callendrello A, Bentley SD, Hanage WP. Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat Commun. 2014;5:5471.

    PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo S, Weiser JN, et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res. 2019;29:304–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Alikhan NF, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella. PLoS Genet. 2018;14:e1007261.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 15.

    Hanage WP, Spratt BG, Turner KME, Fraser C. Modelling bacterial speciation. Philos Trans R Soc B Biol Sci. 2006;361:2039–44.

    Article  Google Scholar 

  • 16.

    Ford Doolittle W, Papke RT. Genomics and the bacterial species problem. Genome Biol. 2006;7:116.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 17.

    Shapiro BJ, David LA, Friedman J, Alm EJ. Looking for Darwin’s footprints in the microbial world. Trends Microbiol. 2009;17:196–204.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Abu-Raddad LJ, Ferguson NM. The impact of cross-immunity, mutation and stochastic extinction on pathogen diversity. Proc R Soc B Biol Sci. 2004;271:2431–8.

    Article  Google Scholar 

  • 19.

    Fraser C, Hanage WP, Spratt BG. Neutral microepidemic evolution of bacterial pathogens. Proc Natl Acad Sci USA. 2005;102:1968–73.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Corander J, Fraser C, Gutmann MU, Arnold B, Hanage WP, Bentley SD, et al. Frequency-dependent selection in vaccine-associated pneumococcal population dynamics. Nat Ecol Evol. 2017;1:1950–60.

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Buckee CO, Jolley KA, Recker M, Penman B, Kriz P, Gupta S, et al. Role of selection in the emergence of lineages and the evolution of virulence in Neisseria meningitidis. Proc Natl Acad Sci USA. 2008;105:15082–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM, Parkhill J, et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet. 2013;45:656–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Croucher NJ, Hanage WP, Harris SR, McGee L, van der Linden M, de Lencastre H, et al. Variable recombination dynamics during the emergence, transmission and ‘disarming’ of a multidrug-resistant pneumococcal clone. BMC Biol. 2014;12:49.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 24.

    Croucher NJ, Chewapreecha C, Hanage WP, Harris SR, McGee L, van der Linden M, et al. Evidence for soft selective sweeps in the evolution of pneumococcal multidrug resistance and vaccine escape. Genome Biol Evol. 2014;6:1589–602.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 25.

    Vos M. A species concept for bacteria based on adaptive divergence. Trends Microbiol. 2011;19:1–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Whitaker RJ. Allopatric origins of microbial species. Philos Trans R Soc B Biol Sci. 2006;361:1975–84.

    Article  Google Scholar 

  • 27.

    Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP. The bacterial species challenge: Making sense of genetic and ecological diversity. Science. 2009;323:741–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Hanage WP, Fraser C, Spratt BG. Fuzzy species among recombinogenic bacteria. BMC Biol. 2005;3:6.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 29.

    Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial speciation. Science. 2007;315:476–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Sheppard SK, McCarthy ND, Falush D, Maiden MCJ. Convergence of Campylobacter species: implications for bacterial evolution. Science. 2008;320:237–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Laible G, Spratt BG, Hakenbeck R. Interspecies recombinational events during the evolution of altered PBP 2x genes in penicillin‐resistant clinical isolates of Streptococcus pneumoniae. Mol Microbiol. 1991;5:1993–2002.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Dowson CG, Coffey TJ, Kell C, Whiley RA. Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae. Mol Microbiol. 1993;9:635–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Majewski J, Zawadzki P, Pickerill P, Cohan FM, Dowson CG. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J Bacteriol. 2000;182:1016–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Bobay L-M, Ochman H. Biological Species Are Universal across Life’s Domains. Genome Biol Evol. 2017;9:491–501.

    PubMed Central  Article  Google Scholar 

  • 35.

    Croucher NJ, Harris SR, Barquist L, Parkhill J, Bentley SD. A high-resolution view of genome-wide pneumococcal transformation. PLoS Pathog. 2012;8:e1002745.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Cohan F. Bacterial species and speciation. Syst Biol. 2001;50:513–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Nosil P, Funk DJ, Ortiz-Barrientos D. Divergent selection and heterogeneous genomic divergence. Mol Ecol. 2009;18:375–402.

    PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Cohan FM, Perry EB. A systematics for discovering the fundamental units of bacterial diversity. Curr Biol. 2007;17:R373–R386.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Marttinen P, Hanage WP. Speciation trajectories in recombining bacterial species. PLoS Comput Biol. 2017;13:e1005640.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 40.

    Gjini E, Valente C, Sá-Leão R, Gomes MGM. How direct competition shapes coexistence and vaccine effects in multi-strain pathogen systems. J Theor Biol. 2016;388:50–60.

    PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Numminen E, Cheng L, Gyllenberg M, Corander J. Estimating the transmission dynamics of Streptococcus pneumoniae from strain prevalence data. Biometrics. 2013;69:748–57.

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Majewski J, Cohan FM. Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity. Genetics. 1999;152:1459–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Barraclough TG, Balbi KJ, Ellis RJ. Evolving concepts of bacterial species. Evol Biol. 2012;39:148–57.

    Article  Google Scholar 

  • 45.

    Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst. 2000;31:343–66.

    Article  Google Scholar 

  • 46.

    Neher RA, Shraiman BI. Competition between recombination and epistasis can cause a transition from allele to genotype selection. Proc Natl Acad Sci USA. 2009;106:6866–71.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Mostowy R, Croucher NJ, Andam CP, Corander J, Hanage WP, Marttinen P. Efficient inference of recent and ancestral recombination within bacterial populations. Mol Biol Evol. 2017;34:1167–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, et al. Rapid pneumococcal evolution in response to clinical interventions. Science. 2011;331:430–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Romero P, Croucher NJ, Hiller NL, Hu FZ, Ehrlich GD, Bentley SD, et al. Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages. J Bacteriol. 2009;191:4854–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Ferguson NM, Galvanl AP, Bush RM. Ecological and immunological determinants of influenza evolution. Nature. 2003;422:428–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Cobey S, Lipsitch M. Niche and neutral effects of acquired immunity permit coexistence of pneumococcal serotypes. Science. 2012;335:1376–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Cobey S. Pathogen evolution and the immunological niche. Ann N Y Acad Sci. 2014;1320:1–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Levin BR. Frequency-dependent selection in bacterial populations. Philos Trans R Soc Lond B Biol Sci. 1988;319:459–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Gomes MGM, Medley GF, Nokes DJ. On the determinants of population structure in antigenically diverse pathogens. Proc R Soc Lond Ser B Biol Sci. 2002;269:227–33.

    Article  Google Scholar 

  • 55.

    Binsker U, Lees JA, Hammond AJ, Weiser JN. Immune exclusion by naturally acquired secretory IgA against pneumococcal pilus-1. J Clin Investig. 2020;130:927–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Gupta S, Maiden MCJ, Feavers IM, Nee S, May RM, Anderson RM. The maintenance of strain structure in populations of recombining infectious agents. Nat Med. 1996;2:437–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Gupta S, Ferguson N, Anderson R. Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents. Science. 1998;280:912–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Croucher NJ, Campo JJ, Le TQ, Liang X, Bentley SD, Hanage WP, et al. Diverse evolutionary patterns of pneumococcal antigens identified by pangenome-wide immunological screening. Proc Natl Acad Sci USA. 2017;114:E357–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Weinberger DM, Dagan R, Givon‐Lavi N, Regev‐Yochay G, Malley R, Lipsitch M. Epidemiologic evidence for serotype‐specific acquired immunity to pneumococcal carriage. J Infect Dis. 2008;197:1511–8.

    PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Malley R, Lipsitch M, Bogaert D, Thompson CM, Hermans P, Claire Watkins A, et al. Serum antipneumococcal antibodies and pneumococcal colonization in adults with chronic obstructive pulmonary disease. J Infect Dis. 2007;196:928–35.

    PubMed  Article  Google Scholar 

  • 61.

    Campo JJ, Le TQ, Pablo JV, Hung C, Teng AA, Tettelin H, et al. Panproteome-wide analysis of antibody responses to whole cell pneumococcal vaccination. Elife. 2018;7:e37015.

    PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Buckee CO, Koelle K, Mustard MJ, Gupta S. The effects of host contact network structure on pathogen diversity and strain structure. Proc Natl Acad Sci USA. 2004;101:10839 LP–44.

    Article  Google Scholar 

  • 63.

    Buckee CO, Recker M, Watkins ER, Gupta S. Role of stochastic processes in maintaining discrete strain structure in antigenically diverse pathogen populations. Proc Natl Acad Sci USA. 2011;108:15504 LP–9.

    Article  Google Scholar 

  • 64.

    Watkins ER, Penman BS, Lourenço J, Buckee CO, Martin C, Maiden MCJ, et al. Vaccination drives changes in metabolic and virulence profiles of Streptococcus pneumoniae. PLoS Pathog. 2015;11:e1005034.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 65.

    Skwark MJ, Croucher NJ, Puranen S, Chewapreecha C, Pesonen M, Xu YY, et al. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis. PLoS Genet. 2017;13:e1006508.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 66.

    Pensar J, Puranen S, Arnold B, MacAlasdair N, Kuronen J, Tonkin-Hill G, et al. Genome-wide epistasis and co-selection study using mutual information. Nucleic Acids Res. 2019;47:e112.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Rocha EPC. Neutral theory, microbial practice: challenges in bacterial population genetics. Mol Biol Evol. 2018;35:1338–47.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Azarian T, Martinez PPP, Arnold BJ, Grant LR, Corander J, Fraser C, et al. Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biol. 2020;18:e3000878.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Johnston C, Campo N, Bergé MJ, Polard P, Claverys JP. Streptococcus pneumoniae, le transformiste. Trends Microbiol. 2014;22:113–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Marttinen P, Gutmann MU, Croucher NJ, Corander J, Hanage WP. Recombination produces coherent bacterial species clusters in both core and accessory genomes. Micro Genom. 2015;1:e000038.

    Google Scholar 

  • 71.

    Croucher NJ, Mostowy R, Wymant C, Turner P, Bentley SD, Fraser C. Horizontal DNA Transfer mechanisms of bacteria as weapons of intragenomic conflict. PLoS Biol. 2016;14:e1002394.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 72.

    Apagyi KJ, Fraser C, Croucher NJ. Transformation asymmetry and the evolution of the bacterial accessory genome. Mol Biol Evol. 2018;35:575–81.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Spearman C. The proof and measurement of association between two things. Am J Psychol. 1904;100:441–71.

    Article  Google Scholar 

  • 74.

    Smirnov N. Table for estimating the goodness of fit of empirical distributions. Ann Math Stat. 1948;19:279–81.

    Article  Google Scholar 

  • 75.

    Kelley T. Statistical method. New York: Macmillan; 1923.

    Google Scholar 

  • 76.

    Simpson EH. Measurement of diversity. Nature. 1949;163:688.

    Article  Google Scholar 

  • 77.

    Kimura M. On the probability of fixation of mutant genes in a population. Genetics. 1962;47:713–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Hanage WP, Fraser C, Spratt BG. The impact of homologous recombination on the generation of diversity in bacteria. J Theor Biol. 2006;239:210–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 79.

    Lawrence JG. Gene transfer in bacteria: speciation without species? Theor Popul Biol. 2002;61:449–60.

    PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Pybus OG, Harvey PH. Testing macro-evolutionary models using incomplete molecular phylogenies. Proc R Soc B Biol Sci. 2000;267:2267–72.

    CAS  Article  Google Scholar 

  • 81.

    Barraclough TG, Birky CW, Burt A. Diversification in sexual and asexual organisms. Evolution. 2003;57:2166–72.

    PubMed  Article  PubMed Central  Google Scholar 

  • 82.

    Hudson RR. Gene genealogies and the coalescent process. In: Oxford surveys in evolutionary biology. Oxford: Oxford University Press; 1990. p. 1–44.

  • 83.

    Numminen E, Gutmann M, Shubin M, Marttinen P, Méric G, van Schaik W, et al. The impact of host metapopulation structure on the population genetics of colonizing bacteria. J Theor Biol. 2016;396:53–62.

    PubMed  Article  PubMed Central  Google Scholar 

  • 84.

    Castillo-Chavez C, Hethcote HW, Andreasen V, Levin SA, Liu WM. Epidemiological models with age structure, proportionate mixing, and cross-immunity. J Math Biol. 1989;27:233–58.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 85.

    McNally A, Kallonen T, Connor C, Abudahab K, Aanensen D, Horner C, et al. Signatures of negative frequency dependent selection in colonisation factors and the evolution of a multi-drug resistant lineage of Escherichia coli. MBio. 2019;10:e00644–19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 86.

    Kwun MJ, Oggioni MR, Bentley SD, Fraser C, Croucher NJ. Synergistic activity of mobile genetic element defences in Streptococcus pneumoniae. Genes. 2019;10:707.

    CAS  PubMed Central  Article  Google Scholar 

  • 87.

    Iranzo J, Puigbo P, Lobkovsky AE, Wolf YI, Koonin EV. Inevitability of genetic parasites. Genome Biol Evol. 2016;8:2856–69. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5631039/.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 88.

    Budroni S, Siena E, Dunning Hotopp JC, Seib KL, Serruto D, Nofroni C, et al. Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc Natl Acad Sci USA. 2011;108:4494–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 89.

    Johnston C, Martin B, Granadel C, Polard P, Claverys JP. Programmed protection of foreign DNA from restriction allows pathogenicity island exchange during pneumococcal transformation. PLoS Pathog. 2013;9:e1003178.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Kwun MJ, Oggioni MR, De Ste Croix M, Bentley SD, Croucher NJ. Excision-reintegration at a pneumococcal phase-variable restriction-modification locus drives within- and between-strain epigenetic differentiation and inhibits gene acquisition. Nucleic Acids Res. 2018;46:11438–53.

    CAS  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Travails of an intrepid platypus counter

    InEnTec: Turning trash into valuable chemical products and clean fuels