Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science (80-). 333, 1024–1026 (2011).
Beniston, M. Climatic change in mountain regions: A review of possible impacts. Clim. Chang. 5, 5–31 (2003).
Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Coping with the cold: Minimum temperatures and thermal tolerances dominate the ecology of mountain ants. Ecol. Entomol. 42, 105–114 (2017).
Bentley, L. K., Robertson, M. P. & Barker, N. P. Range contraction to a higher elevation: The likely future of the montane vegetation in South Africa and Lesotho. Biodivers. Conserv. 28, 131–153 (2019).
Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430 (2015).
Peters, R. L. & Darling, J. D. S. The greenhouse effect and nature reserves. Bioscience 35, 707–717 (1985).
MacArthur, R. & Wilson, E. The Theory of Island Biogeography (Princeton University Press, Princeton, 1967).
Soliveres, S., DeSoto, L., Maestre, F. T. & Olano, J. M. Spatio-temporal heterogeneity in abiotic factors modulate multiple ontogenetic shifts between competition and facilitation. Perspect. Plant Ecol. Evol. Syst. 12, 227–234 (2010).
Suggitt, A. J. et al. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8 (2011).
Thomas, J. A., Rose, R. J., Clarke, R. T., Thomas, C. D. & Webb, N. R. Intraspecific variation in habitat availability among ectothermic animals near their climatic limits and their centres of range. Funct. Ecol. 13, 55–64 (1999).
Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).
Del Toro, I., Ribbons, R. R. & Pelini, S. L. The little things that run the world revisited: A review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecol. News 17, 133–146 (2012).
Wilson, E. The little things that run the world (the importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).
Folgarait, P. J. Ant biodiversity and its relationship to ecosystem functioning: A review. Biodivers. Conserv. 7, 1221–1244 (1998).
Seymour, C. & Joseph, G. Ecology of Smaller Animals Associated with Savanna Woody Plants. in Savanna Woody Plants And Large Herbivores (eds. Scogings, P. & Sankaran, M.) 183–212 (2019).
Palmer, T. M. et al. Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science (80-). 319, 192–195 (2008).
Hölldobler, B. & Wilson, E. The Ants (Harvard University Press, Cambridge, 1990).
Munyai, T. C. & Foord, S. H. Temporal patterns of ant diversity across a mountain with climatically contrasting aspects in the tropics of Africa. PLoS ONE 10, 1–16 (2015).
Dunn, R. R., Parker, C. R. & Sanders, N. J. Temporal patterns of diversity: Assessing the biotic and abiotic controls on ant assemblages. Biol. J. Linn. Soc. 91, 191–201 (2007).
Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).
Warren, R. J. & Chick, L. Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Glob. Chang. Biol. 19, 2082–2088 (2013).
Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 2 (2018).
Joseph, G. S. et al. Microclimates mitigate against hot temperatures in dryland ecosystems: termite mounds as an example. Ecosphere Article e01509 (2016).
Baudier, K. M., Mudd, A. E., Erickson, S. C. & O’Donnell, S. Microhabitat and body size effects on heat tolerance: Implications for responses to climate change (army ants: Formicidae, Ecitoninae). J. Anim. Ecol. 84, 1322–1330 (2015).
Zellweger, F., Roth, T., Bugmann, H. & Bollmann, K. Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure. Glob. Ecol. Biogeogr. 26, 898–906 (2017).
Mauda, E. V., Joseph, G. S., Seymour, C. L., Munyai, T. C. & Foord, S. H. Changes in landuse alter ant diversity, assemblage composition and dominant functional groups in African savannas. Biodivers. Conserv. 27, 947–965 (2018).
Andrew, N. R., Miller, C., Hall, G., Hemmings, Z. & Oliver, I. Aridity and land use negatively influence a dominant species’ upper critical thermal limits. PeerJ 2019, 1–20 (2019).
Oliver, I., Dorrough, J., Doherty, H. & Andrew, N. R. Additive and synergistic effects of land cover, land use and climate on insect biodiversity. Landsc. Ecol. 31, 2415–2431 (2016).
Hahn, N. Floristic diversity of the Soutpansberg, Limpopo Province, South Africa (University of Pretoria, Pretoria, 2006).
Davis, C. & Vincent, K. Climate Risk and Vulnerability: A Handbook for Southern Africa. (2017).
Joseph, G. S. et al. Stability of Afromontane ant diversity decreases across an elevation gradient. Glob. Ecol. Conserv. 17, e00596 (2019).
Longino, J. T. & Colwell, R. K. Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere 2, 1–20 (2011).
Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Contrasting species and functional beta diversity in montane ant assemblages. J. Biogeogr. 42, 1776–1786 (2015).
Tilman, D. Functional Diversity. In Encyclopedia of Biodiversity Vol. 3 (ed. Levin, S. A.) 109–121 (Academic Press, New York, 2001).
Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).
Seymour, C. L., Simmons, R. E., Joseph, G. S. & Slingsby, J. A. On bird functional diversity: Species richness and functional differentiation show contrasting responses to rainfall and vegetation structure in an arid landscape. Ecosystems 18, 971–984 (2015).
Joseph, G. S. et al. Termite mounds mitigate against 50 years of herbivore-induced reduction of functional diversity of savanna woody plants. Landsc. Ecol. 30, 2161–2174 (2015).
Díaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).
Modiba, R. V., Joseph, G. S., Seymour, C. L., Fouché, P. & Foord, S. H. Restoration of riparian systems through clearing of invasive plant species improves functional diversity of Odonate assemblages. Biol. Conserv. 214, 46–54 (2017).
Van Wyk, A. & Smith, G. Regions of Floristic Endemism in Southern Africa: A Review with Emphasis on Succulents (Umdaus press, Umdaus, 2001).
Mostert, T., Bredenkamp, G., Klopper, H. & Al, E. Major vegetation types of the Soutpansberg conservancy and the Blouberg nature reserve, South Africa. Koedoe 50, 32–48 (2008).
Mucina, L. & Rutherford, M. C. The vegetation of South Africa, Lesotho and Swaziland. (2011).
McKillup, S. Statistics Explained: An Introductory Guide for Life Scientists (Cambridge University Press, Cambridge, 2011).
Yates, M., Andrew, N., Binns, M. & Gibb, H. Morphological traits: predictable responses to macrohabitats across a 300 km scale. PeerJ 2, e271 (2014).
Schofield, S. F., Bishop, T. R. & Parr, C. L. Morphological characteristics of ant assemblages (Hymenoptera: Formicidae) differ among contrasting biomes. Myrmecol. News 23, 129–137 (2016).
Colwell, R. K. EstimateS: Statistical estimation of species richness and shared species from samples. (2006).
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
Baselga, A. & Orme, C. D. L. Betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).
Wang, Y., Naumann, U., Eddelbuettel, D. & Warton, D. mvabund: statistical methods for analysing multivariate abundance data. R package version 3.13.1. (2018).
Warton, D. I., Foster, S. D., Death, G., Stoklosa, J. & Dunstan, P. K. Model-based thinking for community ecology. Plant Ecol. 216, 669–682 (2015).
Warton, D. I., Thibaut, L. & Wang, Y. A. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses. PLoS ONE 12, 1–19 (2017).
Hui, F. boral: Bayesian Ordination and Regression AnaLysis. R package version 1.6.1. (2018).
Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).
Weber, N. The biology of the fungus-growing ants. Part IV. Additional new forms. Rev. Entomol. 9, 154–206 (1938).
Laliberté, E. & Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package 1.0–11. (2011).
Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. Biol. Sci. 269, 1721–1727 (2002).
Kembel, S. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
Gotelli, N. J. & Rohde, K. Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecol. Lett. 5, 86–94 (2002).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team, . nlme: Linear and Nonlinear Mixed Effects Models. (2016).
Kamil Barton. MuMIn: Multi-Model Inference. R package version 1.43.17. (2020).
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed). Ecological Modelling vol. 172 (2002).
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
Didham, R., Kapos, V. & Ewers, R. Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121, 161–170 (2012).
Niu, K. et al. Fertilization decreases species diversity but increases functional diversity: A three-year experiment in a Tibetan alpine meadow. Agric. Ecosyst. Environ. 182, 106–112 (2014).
Joseph, G. S. et al. Elephants, termites and mound thermoregulation in a progressively warmer world. Landsc. Ecol. 33, 731–742 (2018).
Bishop, T. R. et al. Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages. Glob. Chang. Biol. 25, 2162–2173 (2019).
Prentice, I. C. et al. Dynamic global vegetation modeling: Quantifying terrestrial ecosystem responses to large-scale environmental change. Terrest. Ecosyst. Chang. World https://doi.org/10.1007/978-3-540-32730-1_15 (2007).
Pfeiffer, M., Kumar, D., Martens, C. & Scheiter, S. Climate change will cause non-analogue vegetation states in Africa and commit vegetation to long-term change. Biogeosci. Discuss. https://doi.org/10.5194/bg-2020-179 (2020).
Potter, K. A., Woods, H. A. & Pincebourde, S. Microclimatic challenges in global change biology. Glob. Chang. Biol. 19, 2932–2939 (2013).
Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E. & Evans, T. A. Microhabitats reduce animal’s exposure to climate extremes. Glob. Chang. Biol. 20, 495–503 (2014).
Bonachela, J. A. et al. Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science (80-). 347, 651–655 (2015).
Joseph, G. S. et al. Landuse change in savannas disproportionately reduces functional diversity of invertebrate predators at the highest trophic levels: Spiders as an example. Ecosystems 21, 930–942 (2018).
Hoerling, M. & Kumar, A. The perfect ocean for drought. Science (80-). 299, 691–694 (2003).
Diffenbaugh, N. S. & Field, B. S. Changes in ecologically critical terrestrial climate conditions. Science (80-). 341, 486–493 (2013).
Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science (80-). 322, 258–261 (2008).
Fowler, H., Forti, L., Brandão, C. & et al. Ecologia nutricional de formigas. in Ecologia Nutricional de Insetos E Suas Implicações No Manejo de Pragas 131–223 (1991).
Davidson, D., Cook, S. & Snelling, R. Liquid-feeding performances of ants (Formicidae): Ecological and evolutionary implications. Oecologia 139, 255–266 (2004).
Sarty, M., Abbott, K. & Lester, P. Habitat complexity facilitates coexistence in a tropical ant community. Oecologia 149, 465–473 (2006).
Kaspari, M. Body size and microclimate use in Neotropical granivorous ants. Oecologia 96, 500–507 (1993).
Weiser, M. & Kaspari, M. Ecological morphospace of New World ants. Ecol. Entomol. 31, 131–142 (2006).
Gibb, H. et al. Does morphology predict trophic position and habitat use of ant species and assemblages?. Oecologia 177, 519–531 (2015).
Gibb, H. & Cl, P. Does structural complexity determine the morphology of assemblages? An experimental test on three continents. PLoS ONE 8, e64005 (2013).
Source: Ecology - nature.com