in

Aerial drone observations identified a multilevel society in feral horses

  • 1.

    Grueter, C. C., Qi, X., Li, B. & Li, M. Multilevel societies. Curr. Biol. 27, 984–986 (2017).

    Article  CAS  Google Scholar 

  • 2.

    Grueter, C. C., Matsuda, I., Zhang, P. & Zinner, D. Multilevel societies in primates and other mammals: Introduction to the special issue. Int. J. Primatol. 33, 993–1001 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Matsuda, I. et al. Comparisons of intraunit relationships in nonhuman primates living in multilevel social systems. Int. J. Primatol. 33, 1038–1053 (2012).

    Article  Google Scholar 

  • 4.

    Papageorgiou, D. et al. The multilevel society of a small-brained bird. Curr. Biol. 29, R1120–R1121 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Grueter, C. C. et al. Multilevel Organisation of Animal Sociality. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.05.003 (2020).

    Article  PubMed  Google Scholar 

  • 6.

    Schreier, A. L. & Swedell, L. The fourth level of social structure in a multi-level society: ecological and social functions of clans in Hamadryas Baboons. Am. J. Primatol. 71, 948–955 (2009).

    PubMed  Article  Google Scholar 

  • 7.

    Snyder-Mackler, N., Beehner, J. C. & Bergman, T. J. Defining higher levels in the multilevel societies of Geladas (Theropithecus gelada). Int. J. Primatol. 33, 1054–1068 (2012).

    Article  Google Scholar 

  • 8.

    Whitehead, H. et al. Multilevel societies of female sperm whales (Physeter macrocephalus) in the Atlantic and Pacific: Why are they so different?. Int. J. Primatol. 33, 1142–1164 (2012).

    Article  Google Scholar 

  • 9.

    Tong, W., Shapiro, B. & Rubenstein, D. I. Genetic relatedness in two-tiered plains zebra societies suggests that females choose to associate with kin. Behaviour 152, 2059–2078 (2015).

    Article  Google Scholar 

  • 10.

    Rubenstein, D. I. & Hack, M. Ecology and social structure of the Gobi khulan Equus hemionus subsp. in the Gobi B National Park, Mongolia. In Sexual Selection in Primates: New and Comparative Perspectives 266–279 (2004). https://doi.org/10.1017/CBO9780511542459.017.

  • 11.

    Ozogany, K. & Vicsek, T. Modeling leadership hierarchy in multilevel animal societies. Cornell Univ. Libr. Phys. arXiv:1403.0260 (2014).

  • 12.

    Swedell, L. & Plummer, T. A papionin multilevel society as a model for hominin social evolution. Int. J. Primatol. 33, 1165–1193 (2012).

    Article  Google Scholar 

  • 13.

    Linklater, W. L. Adaptive explanation in socio-ecology: Lessons from the equidae. Biol. Rev. 75, 1–20 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Forcina, G. et al. From groups to communities in western lowland gorillas. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2018.2019 (2019).

    Article  Google Scholar 

  • 15.

    Zhang, P., Li, B., Qi, X., MacIntosh, A. J. J. & Watanabe, K. A proximity-based social network of a group of Sichuan snub-nosed monkeys (Rhinopithecus roxellana). Int. J. Primatol. 33, 1081–1095 (2012).

    CAS  Article  Google Scholar 

  • 16.

    de Silva, S., Schmid, V. & Wittemyer, G. Fission–fusion processes weaken dominance networks of female Asian elephants in a productive habitat. Behav. Ecol. 28, 243–252 (2016).

    Article  Google Scholar 

  • 17.

    Wittemyer, G., Douglas-Hamilton, I. & Getz, W. M. The socioecology of elephants: Analysis of the processes creating multitiered social structures. Anim. Behav. 69, 1357–1371 (2005).

    Article  Google Scholar 

  • 18.

    Qi, X. G. et al. Satellite telemetry and social modeling offer new insights into the origin of primate multilevel societies. Nat. Commun. https://doi.org/10.1038/ncomms6296 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Stead, S. M. & Teichroeb, J. A. A multi-level society comprised of one-male and multi-male core units in an African colobine (Colobus angolensis ruwenzorii). PLoS ONE 14, e0217666 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Ward, A. & Webster, M. Attraction, Alignment and repulsion: how groups form and how they function. In Sociality: The Behaviour of Group-Living Animals 29–54 (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-28585-6_3.

  • 21.

    Aureli, F., Schaffner, C. M., Asensio, N. & Lusseau, D. What is a subgroup? How socioecological factors influence interindividual distance. Behav. Ecol. 23, 1308–1315 (2012).

    Article  Google Scholar 

  • 22.

    Maciej, P., Patzelt, A., Ndao, I., Hammerschmidt, K. & Fischer, J. Social monitoring in a multilevel society: A playback study with male Guinea baboons. Behav. Ecol. Sociobiol. 67, 61–68 (2013).

    PubMed  Article  Google Scholar 

  • 23.

    Bergman, T. J. Experimental evidence for limited vocal recognition in a wild primate: Implications for the social complexity hypothesis. In Proceedings of the Royal Society B: Biological Sciences 277, 3045–3053 (Royal Society, London, 2010).

  • 24.

    Bowler, M., Knogge, C., Heymann, E. W. & Zinner, D. Multilevel societies in new world primates? Flexibility may characterize the organization of Peruvian red uakaris (Cacajao calvus ucayalii). Int. J. Primatol. 33, 1110–1124 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Hemelrijk, C. K. Towards the integration of social dominance and spatial structure. Anim. Behav. 59, 1035–1048 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Miller, R. Seasonal movements and home ranges of feral horse bands in Wyoming’s Red Desert. J. Range Manag. 36, 199 (1983).

    Article  Google Scholar 

  • 28.

    Miller, R. & Dennisto, R. H. I. Interband dominance in feral horses. Z. Tierpsychol. 51, 41–47 (1979).

    Article  Google Scholar 

  • 29.

    Feh, C. Relationships and communication in socially natural horse herds. In The Domestic Horse: The Origins, Development and Management of its Behaviour (eds Mills, D. S. & McDonnell, S. M.) 83–93 (Cambridge University Press, Cambridge, 2005).

    Google Scholar 

  • 30.

    Boyd, L., Scorolli, A., Nowzari, H. & Bouskila, A. Social organization of wild equids. In Wild Equids: Ecology, Management, and Conservation (eds Ransom, J. I. & Kaczensky, P.) 7–22 (Johns Hopkins University Press, Baltimore, 2016).

    Google Scholar 

  • 31.

    Ringhofer, M. et al. Comparison of the social systems of primates and feral horses: Data from a newly established horse research site on Serra D’Arga, northern Portugal. Primates 58, 479–484 (2017).

    PubMed  Article  Google Scholar 

  • 32.

    Inoue, S. et al. Spatial positioning of individuals in a group of feral horses: A case study using drone technology. Mammal Res. 64, 249–259 (2019).

    Article  Google Scholar 

  • 33.

    Inoue, S., Yamamoto, S., Ringhofer, M., Mendonça, R. S. & Hirata, S. Lateral position preference in grazing feral horses. Ethology 00, 1–9 (2019).

    Google Scholar 

  • 34.

    Ringhofer, M. et al. Herding mechanisms to maintain the cohesion of a harem group: two interaction phases during herding. J. Ethol. 38, 71–77. https://doi.org/10.1007/s10164-019-00622-5 (2019).

    Article  Google Scholar 

  • 35.

    Go, C. K. et al. A mathematical model of herding in horse-harem group. J. Ethol. https://doi.org/10.1007/s10164-020-00656-0 (2020).

    Article  Google Scholar 

  • 36.

    Young, D. et al. Package ‘Mixtools’ Title Tools for Analyzing Finite Mixture Models. J Stat Software. 32(6), 1–29. https://doi.org/10.18637/jss.v032.i06 (2009).

  • 37.

    Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).

    Article  Google Scholar 

  • 38.

    Torney, C. J. et al. Inferring the rules of social interaction in migrating caribou. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170385 (2018).

    Article  Google Scholar 

  • 39.

    Pun, A., Birch, S. A. J. & Baron, A. S. Infants use relative numerical group size to infer social dominance. Proc. Natl. Acad. Sci. 113, 2376–2381 (2016).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 40.

    Berger, J. Organizational systems and dominance in feral horses in the Grand Canyon. Behav. Ecol. Sociobiol. 2, 131–146 (1977).

    Article  Google Scholar 

  • 41.

    de Silva, S. & Wittemyer, G. A comparison of social organization in Asian elephants and African savannah elephants. Int. J. Primatol. 33, 1125–1141 (2012).

    Article  Google Scholar 

  • 42.

    Zhang, P., Watanabe, K., Li, B. & Qi, X. Dominance relationships among one-male units in a provisioned free-ranging band of the Sichuan snub-nosed monkeys (Rhinopithecus roxellana) in the Qinling Mountains, China. Am. J. Primatol. 70, 634–641 (2008).

    PubMed  Article  Google Scholar 

  • 43.

    Grueter, C. & Zinner, D. Nested societies. Convergent adaptations of baboons and snub-nosed monkeys? Primate Rep. 70, 1–98 (2004).

  • 44.

    Rubenstein, D. I. & Hack, M. Natural and sexual selection and the evolution of multi-level societies: Insights from zebras with comparisons to primates. In Sexual Selection in Primates: New and Comparative Perspectives 266–279 (2004). https://doi.org/10.1017/CBO9780511542459.017.

  • 45.

    Grueter, C. C. & Van Schaik, C. P. Evolutionary determinants of modular societies in colobines. Behav. Ecol. 21, 63–71 (2010).

    Article  Google Scholar 

  • 46.

    Gray, M. E. An infanticide attempt by a free-roaming feral stallion (Equus caballus). Biol. Lett. 5, 23–25 (2009).

    PubMed  Article  Google Scholar 

  • 47.

    Boyd, L. & Keiper, R. Behavioural ecology of feral horses. In The Domestic Horse: The Origins, Development and Management of its Behaviour (eds Mills, D. S. & McDonnell, S. M.) 55–82 (Cambridge University Press, Cambridge, 2005).

    Google Scholar 

  • 48.

    Christensen, J. W., Ladewig, J., Søndergaard, E. & Malmkvist, J. Effects of individual versus group stabling on social behaviour in domestic stallions. Appl. Anim. Behav. Sci. 75, 233–248 (2002).

    Article  Google Scholar 

  • 49.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).

    Google Scholar 

  • 50.

    Hoppitt, W. J. E. & Farine, D. R. Association indices for quantifying social relationships: How to deal with missing observations of individuals or groups. Anim. Behav. 136, 227–238 (2018).

    Article  Google Scholar 

  • 51.

    Calenge, C. & Fortmann-Roe, S. Package ‘ adehabitatHR ’ v0.4.18. R CRAN Repos. (2020).

  • 52.

    Couzin, I. D., Krause, J., James, R., Ruxton, G. D. & Franks, N. R. Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002).

    MathSciNet  PubMed  Article  Google Scholar 

  • 53.

    Hinde, R. A. Interactions, relationships and social structure. Man New Ser. 11, 1–17 (1976).

    Google Scholar 

  • 54.

    King, A. J., Sueur, C., Huchard, E. & Cowlishaw, G. A rule-of-thumb based on social affiliation explains collective movements in desert baboons. Anim. Behav. 82, 1337–1345 (2011).

    Article  Google Scholar 

  • 55.

    Cairns, S. J. & Schwager, S. J. A comparison of association indices. Anim. Behav. 35, 1454–1469 (1987).

    Article  Google Scholar 

  • 56.

    Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists. J Stat Software https://doi.org/10.18637/jss.v022.i0 (2007).

    Article  Google Scholar 

  • 57.

    Croft, D. P., Madden, J. R., Franks, D. W. & James, R. Hypothesis testing in animal social networks. Trends Ecol. Evol. 26, 502–507 (2011).

    PubMed  Article  Google Scholar 

  • 58.

    Franks, D. W., Weiss, M. N., Silk, M. J., Perryman, R. J. Y. & Croft, D. P. Calculating effect sizes in animal social network analysis. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13429 (2020).

    Article  Google Scholar 

  • 59.

    Weiss, M. N. et al. Common permutations of animal social network data are not appropriate for hypothesis testing using linear models. bioRxiv 1–26 (2020). https://doi.org/10.1101/2020.04.29.068056.

  • 60.

    Sosa, S. et al. A multilevel statistical toolkit to study animal social networks: Animal Network Toolkit ( ANT ) R package. bioRxiv 347005 (2018). https://doi.org/10.1101/347005

  • 61.

    Sosa, S. Social network analysis. In International Encyclopedia of the Social & Behavioral Sciences 2nd Edn, 1–18 (eds Vonk, J. & Shackleford, T. K.) (Springer, Berlin, 2018). https://doi.org/10.1016/B978-0-08-097086-8.10563-X.

    Google Scholar 

  • 62.

    Damien Farine. Animal Social Network Inference and Permutations for Ecologists in R using asnipe. Methods in Ecology and Evolution. 4(12), 1187–1194. https://doi.org/10.1111/2041-210X.12121 (2014).

  • 63.

    Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In International AAAI Conference on Weblogs and Social Media 361–362 (2009).


  • Source: Ecology - nature.com

    Rock magnetism uncrumples the Himalayas’ complex collision zone

    Scientists discover slimy microbes that may help keep coral reefs healthy