in

Asynchronicity of endemic and emerging mosquito-borne disease outbreaks in the Dominican Republic

  • 1.

    Musso, D., Rodriguez-Morales, A. J., Levi, J. E., Cao-Lormeau, V.-M. & Gubler, D. J. Unexpected outbreaks of arbovirus infections: lessons learned from the Pacific and tropical America. Lancet Infect. Dis. 18, e355–e361 (2018).

    PubMed  Article  Google Scholar 

  • 2.

    Mavian, C. et al. Islands as hotspots for emerging mosquito-borne viruses: a one-health perspective. Viruses 11, 11 (2018).

  • 3.

    Cao-Lormeau, V.-M. Tropical islands as new hubs for emerging arboviruses. Emerg. Infect. Dis. 22, 913–915 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Cassadou, S. et al. Emergence of chikungunya fever on the French side of Saint Martin island, October to December 2013. Euro Surveill. 19, 20752 (2014).

  • 5.

    Dorléans, F. et al. Outbreak of Chikungunya in the French Caribbean Islands of Martinique and Guadeloupe: findings from a Hospital-Based Surveillance System (2013–2015). Am. J. Trop. Med. Hyg. 98, 1819–1825 (2018).

  • 6.

    Halstead, S. B. Reappearance of chikungunya, formerly called dengue, in the Americas. Emerg. Infect. Dis. 21, 557–561 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Faria, N. R. et al. Zika virus in the Americas: early epidemiological and genetic findings. Science 352, 345–349 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Grubaugh, N. D., Faria, N. R., Andersen, K. G. & Pybus, O. G. Genomic insights into Zika virus emergence and spread. Cell 172, 1160–1162 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Metsky, H. C. et al. Zika virus evolution and spread in the Americas. Nature 546, 411–415 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Hotez, P. J. & Murray, K. O. Dengue, West Nile virus, chikungunya, Zika-and now Mayaro? PLoS Negl. Trop. Dis. 11, e0005462 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Lorenz, C., Freitas Ribeiro, A. & Chiaravalloti-Neto, F. Mayaro virus distribution in South America. Acta Trop. 198, 105093 (2019).

    PubMed  Article  Google Scholar 

  • 12.

    Ganjian, N. & Riviere-Cinnamond, A. Mayaro virus in Latin America and the Caribbean. Rev. Panam. Salud Publica 44, e14 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Weaver, S. C. & Reisen, W. K. Present and future arboviral threats. Antivir. Res. 85, 328–345 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Long, K. C. et al. Experimental transmission of Mayaro virus by Aedes aegypti. Am. J. Trop. Med. Hyg. 85, 750–757 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Suspected dengue cases by epidemiological week for countries and territories of the America. https://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html?start=2.

  • 16.

    Five-fold increase in dengue cases in the Americas over the past decade. https://www.paho.org/hq/index.php?option=com_content&view=article&id=9657:2014-los-casos-dengue-americas- (2014).

  • 17.

    Obolski, U. et al. MVSE: an R‐package that estimates a climate‐driven mosquito‐borne viral suitability index. Methods Ecol. Evol. 10, 1357–1370 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Kraemer, M. U. G. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4, e08347 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Kraemer, M. U. G. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Hamlet, A. et al. The seasonal influence of climate and environment on yellow fever transmission across Africa. PLoS Negl. Trop. Dis. 12, e0006284 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Do, T. T. T., Martens, P., Luu, N. H., Wright, P. & Choisy, M. Climatic-driven seasonality of emerging dengue fever in Hanoi, Vietnam. BMC Public Health 14, 1078 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Perez-Guzman, P. N. et al. Measuring mosquito-borne viral suitability in Myanmar and implications for Local Zika virus transmission. PLoS Curr. 10 (2018).

  • 23.

    Rodrigues Faria, N. et al. Epidemiology of Chikungunya Virus in Bahia, Brazil, 2014-2015. PLoS Curr. 8 (2016).

  • 24.

    Lourenço, J. et al. Epidemiological and ecological determinants of Zika virus transmission in an urban setting. eLife 6, e29820 (2017).

  • 25.

    Dengue serotypes by year for countries and territories of the Americas. https://www.paho.org/data/index.php/es/temas/indicadores-dengue/dengue-nacional/549-dengue-serotypes-es.html.

  • 26.

    Bowman, L. R., Rocklöv, J., Kroeger, A., Olliaro, P. & Skewes, R. A comparison of Zika and dengue outbreaks using national surveillance data in the Dominican Republic. PLoS Negl. Trop. Dis. 12, e0006876 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Lindsey, N. P., Staples, J. E. & Fischer, M. Chikungunya Virus disease among travelers-United States 2014–2016. Am. J. Trop. Med. Hyg. 98, 192–197 (2018).

    PubMed  Article  Google Scholar 

  • 28.

    Zingman, M. A., Paulino, A. T. & Payano, M. P. Clinical manifestations of chikungunya among university professors and staff in Santo Domingo, the Dominican Republic. Rev. Panam. Salud Publica 41, e64 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Rosario, V. et al. Chikungunya infection in the general population and in patients with rheumatoid arthritis on biological therapy. Clin. Rheumatol. 34, 1285–1287 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    He, A., Brasil, P., Siqueira, A. M., Calvet, G. A. & Kwatra, S. G. The emerging Zika virus threat: a guide for dermatologists. Am. J. Clin. Dermatol. 18, 231–236 (2017).

    PubMed  Article  Google Scholar 

  • 31.

    Martinez, J. D., Garza, J. A. Cla & Cuellar-Barboza, A. Going viral 2019: Zika, Chikungunya, and Dengue. Dermatol. Clin. 37, 95–105 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Duffy, M. R. et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 360, 2536–2543 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Pineda, C., Muñoz-Louis, R., Caballero-Uribe, C. V. & Viasus, D. Chikungunya in the region of the Americas. A challenge for rheumatologists and health care systems. Clin. Rheumatol. 35, 2381–2385 (2016).

    PubMed  Article  Google Scholar 

  • 34.

    Langsjoen, R. M. et al. Molecular virologic and clinical characteristics of a chikungunya fever outbreak in La Romana, Dominican Republic, 2014. PLoS Negl. Trop. Dis. 10, e0005189 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Grubaugh, N. D. et al. Tracking virus outbreaks in the twenty-first century. Nat. Microbiol. 4, 10–19 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 150035 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A. & Rocklöv, J. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. PLoS ONE 9, e89783 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 38.

    Winokur, O. C., Main, B. J., Nicholson, J. & Barker, C. M. Impact of temperature on the extrinsic incubation period of Zika virus in Aedes aegypti. PLoS Negl. Trop. Dis. 14, e0008047 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 39.

    Chan, M. & Johansson, M. A. The incubation periods of Dengue viruses. PLoS ONE 7, e50972 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Faria, N. R. et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546, 406–410 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Cauchemez, S. et al. Local and regional spread of chikungunya fever in the Americas. Eur. Surveill. 19, 20854 (2014).

    CAS  Article  Google Scholar 

  • 43.

    Nishiura, H., Kinoshita, R., Mizumoto, K., Yasuda, Y. & Nah, K. Transmission potential of Zika virus infection in the South Pacific. Int. J. Infect. Dis. 45, 95–97 (2016).

    PubMed  Article  Google Scholar 

  • 44.

    Liu, Y. et al. Reviewing estimates of the basic reproduction number for dengue, Zika and chikungunya across global climate zones. Environ. Res. 182, 109114 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Rodriguez-Barraquer, I., Salje, H. & Cummings, D. A. Opportunities for improved surveillance and control of dengue from age-specific case data. Elife 8, e45474 (2019).

  • 46.

    Plan de preparación y respuesta frente a brotes de Fiebre Chikungunya. Resolución Ministerial N° 427 – 2014/MINSA Lima, Peu (2014).

  • 47.

    Low, G. K.-K., Ogston, S. A., Yong, M.-H., Gan, S.-C. & Chee, H.-Y. Global dengue death before and after the new World Health Organization 2009 case classification: a systematic review and meta-regression analysis. Acta Trop. 182, 237–245 (2018).

    PubMed  Article  Google Scholar 

  • 48.

    Freitas, A. R. R., Alarcón-Elbal, P. M., Paulino-Ramírez, R. & Donalisio, M. R. Excess mortality profile during the Asian genotype chikungunya epidemic in the Dominican Republic. 2014. Trans. R. Soc. Trop. Med. Hyg. 112, 443–449 (2018).

    PubMed  Article  Google Scholar 

  • 49.

    Imai, N., Dorigatti, I., Cauchemez, S. & Ferguson, N. M. Estimating dengue transmission intensity from sero-prevalence surveys in multiple countries. PLoS Negl. Trop. Dis. 9, e0003719 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 50.

    Grubaugh, N. D. et al. Xenosurveillance: a novel mosquito-based approach for examining the human-pathogen landscape. PLoS Negl. Trop. Dis. 9, e0003628 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    Fauver, J. R. et al. The use of xenosurveillance to detect human bacteria, parasites, and viruses in mosquito bloodmeals. Am. J. Trop. Med. Hyg. 97, 324–329 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Fauver, J. R. et al. Xenosurveillance reflects traditional sampling techniques for the identification of human pathogens: a comparative study in West Africa. PLoS Negl. Trop. Dis. 12, e0006348 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 53.

    Grubaugh, N. D. et al. Travel surveillance and genomics uncover a hidden zika outbreak during the waning epidemic. Cell 178, 1057–1071.e11 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Vogels, C. B. F. et al. Arbovirus coinfection and co-transmission: a neglected public health concern? PLoS Biol. 17, e3000130 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 55.

    Bisanzio, D. et al. Spatio-temporal coherence of dengue, chikungunya and Zika outbreaks in Merida, Mexico. PLoS Negl. Trop. Dis. 12, e0006298 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Freitas, L. P., Cruz, O. G., Lowe, R. & Sá Carvalho, M. Space–time dynamics of a triple epidemic: dengue, chikungunya and Zika clusters in the city of Rio de Janeiro. Proc. R. Soc. B: Biol. Sci. 286, 20191867 (2019).

    Article  Google Scholar 

  • 57.

    Shioda, K. et al. Identifying signatures of the impact of rotavirus vaccines on hospitalizations using sentinel surveillance data from Latin American countries. Vaccine 38, 323–329 (2020).

    PubMed  Article  Google Scholar 

  • 58.

    Blohm, G. et al. Mayaro as a Caribbean traveler: Evidence for multiple introductions and transmission of the virus into Haiti. Int. J. Infect. Dis. 87, 151–153 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Lednicky, J. et al. Mayaro Virus in Child with Acute Febrile Illness, Haiti, 2015. Emerg. Infect. Dis. 22, 2000–2002 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Weppelmann, T. A. et al. A tale of two flaviviruses: a seroepidemiological study of dengue virus and west nile virus transmission in the ouest and sud-est departments of Haiti. Am. J. Trop. Med. Hyg. 96, 135–140 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Wiggins, K., Eastmond, B. & Alto, B. W. Transmission potential of Mayaro virus in Florida Aedes aegypti and Aedes albopictus mosquitoes. Med. Vet. Entomol. 32, 436–442 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Pereira, T. N., Carvalho, F. D., De Mendonça, S. F., Rocha, M. N. & Moreira, L. A. Vector competence of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes for Mayaro virus. PLoS Negl. Trop. Dis. 14, e0007518 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Kantor, A. M., Lin, J., Wang, A., Thompson, D. C. & Franz, A. W. E. Infection pattern of Mayaro Virus in Aedes aegypti (Diptera: Culicidae) and transmission potential of the virus in mixed infections with Chikungunya virus. J. Med. Entomol. 56, 832–843 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Komar, O. et al. West Nile virus survey of birds and mosquitoes in the Dominican Republic. Vector-Borne Zoonotic Dis. 5, 120–126 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Requena-Méndez, A. et al. Cases of chikungunya virus infection in travellers returning to Spain from Haiti or Dominican Republic, April-June 2014. Eur. Surveill. 19, 20853 (2014).

    Article  Google Scholar 

  • 66.

    Millman, A. J. et al. Chikungunya and Dengue virus infections among united states community service volunteers returning from the Dominican Republic, 2014. Am. J. Trop. Med. Hyg. 94, 1336–1341 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Duijster, J. W. et al. Zika virus infection in 18 travellers returning from Surinam and the Dominican Republic, The Netherlands, November 2015–March 2016. Infection 44, 797–802 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Barzon, L. et al. Isolation of infectious Zika virus from saliva and prolonged viral RNA shedding in a traveller returning from the Dominican Republic to Italy, January 2016. Eur. Surveill. 21, 30159 (2016).

    Google Scholar 

  • 69.

    Goncé, A. et al. Spontaneous abortion associated with Zika virus infection and persistent viremia. Emerg. Infect. Dis. 24, 933–935 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Díaz-Menéndez, M. et al. Initial experience with imported Zika virus infection in Spain. Enfermedades Infecciosas y. Microbiol.ía Cl.ínica 36, 4–8 (2018).

    Google Scholar 

  • 71.

    Perez, F. et al. The decline of dengue in the Americas in 2017: discussion of multiple hypotheses. Trop. Med. Int. Health 24, 442–453 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Ribeiro, G. S. et al. Does immunity after Zika virus infection cross-protect against dengue?. Lancet Glob. Health 6, e140–e141 (2018).

    PubMed  Article  Google Scholar 

  • 73.

    Ribeiro, G. S. et al. Influence of herd immunity in the cyclical nature of arboviruses. Curr. Opin. Virol. 40, 1–10 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 74.

    Gordon, A. et al. Prior dengue virus infection and risk of Zika: a pediatric cohort in Nicaragua. PLoS Med. 16, e1002726 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 75.

    Rodriguez-Barraquer, I. et al. Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science 363, 607–610 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 76.

    Tsang, T. K. et al. Effects of infection history on dengue virus infection and pathogenicity. Nat. Commun. 10, 1246 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 77.

    Katzelnick, L. C., Montoya, M., Gresh, L., Balmaseda, A. & Harris, E. Neutralizing antibody titers against dengue virus correlate with protection from symptomatic infection in a longitudinal cohort. Proc. Natl Acad. Sci. USA 113, 728–733 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 78.

    República Dominicana Chikungunya. https://www.paho.org/dor/images/stories/archivos/chikungunya/boletin_chikv_no-13_2014_8_20.pdf?ua=1 (2014).

  • 79.

    Verdonschot, P. F. M. & Besse-Lototskaya, A. A. Flight distance of mosquitoes (Culicidae): a metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands. Limnologica 45, 69–79 (2014).

    Article  Google Scholar 

  • 80.

    Vazeille, M. et al. Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS ONE 2, e1168 (2007).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 81.

    Lamballerie, Xde et al. Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? Virol. J. 5, 33 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 82.

    González, M. A. et al. Micro-environmental features associated to container-dwelling mosquitoes (Diptera: Culicidae) in an urban cemetery of the Dominican Republic. Rev. Biol. Trop. 67, 132–145 (2019).

  • 83.

    González, M. A. et al. A survey of tire-breeding mosquitoes (Diptera: Culicidae) in the Dominican Republic: considerations about a pressing issue. Biomédica 40, 507–515 (2020).

  • 84.

    IX Censo Nacional De Población Y Vivienda. vol. 1 (2012).

  • 85.

    PLISA Health Information Platform for the Americas. https://www.paho.org/data/index.php/en/.

  • 86.

    Dominican Republic: Human Development Indicators. http://hdr.undp.org/en/countries/profiles/DOM.

  • 87.

    Lipsitch, M. et al. Transmission dynamics and control of severe acute respiratory syndrome. Science 300, 1966–1970 (2003).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 88.

    Petrone, M. E. et al. Asynchronicity of endemic and emerging mosquito-borne disease outbreaks in the Dominican Republic. Repository: Arbovirus_Epi_DR. (2020), https://doi.org/10.5281/zenodo.4287651.


  • Source: Ecology - nature.com

    Rock magnetism uncrumples the Himalayas’ complex collision zone

    Scientists discover slimy microbes that may help keep coral reefs healthy