in

The role of the brown bear Ursus arctos as a legitimate megafaunal seed disperser

  • 1.

    Cain, M. L., Milligan, B. G. & Strand, A. E. Long-distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Cousens, R., Dytham, C. & Law, R. Dispersal in Plants: A Population Perspective 1st edn. (Oxford University Press, Oxford, 2008).

    Google Scholar 

  • 3.

    Jordano, P. Fruits and frugivory. In Seeds: The Ecology of Regeneration in Plant Communities 2nd edn (ed. Fenner, M.) 125–166 (UK CAB International, Wallingford, 2000).

    Google Scholar 

  • 4.

    Jordano, P., García, C., Godoy, J. A. & García-Castaño, J. L. Differential contribution of frugivores to complex seed dispersal patterns. PNAS 104, 3278–3282 (2007).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 5.

    Bueno, R. S. et al. Functional redundancy and complementarities of seed dispersal by the last neotropical megafrugivores. PLoS ONE 8, 0056252 (2013).

    Article  ADS  CAS  Google Scholar 

  • 6.

    Pérez-Méndez, N., Jordano, P., García, C. & Valido, A. The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Sci. Rep. 6, 24820 (2016).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 7.

    Hamrick, J. L., Murawski, D. A. & Nason, J. D. The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetatio 107, 281–297 (1993).

    Google Scholar 

  • 8.

    Mueller, T., Lenz, J., Caprano, T., Fiedler, W. & Böhning-Gaese, K. Large frugivorous birds facilitate functional connectivity of fragmented landscapes. J. Appl. Ecol. 51, 684–692 (2014).

    Article  Google Scholar 

  • 9.

    Pérez-Méndez, N., Jordano, P. & Valido, A. Persisting in defaunated landscapes: reduced plant population connectivity after seed dispersal collapse. J. Ecol. 106, 936–947 (2018).

    Article  Google Scholar 

  • 10.

    Schupp, E. W. Quantity, quality and the effectiveness of seed dispersal by animals. Vegetatio 107, 15–29 (1993).

    Google Scholar 

  • 11.

    Schupp, E. W., Jordano, P. & Gómez, J. M. Seed dispersal effectiveness revisited: a conceptual review. New Phytol. 188, 333–353 (2010).

    PubMed  Article  Google Scholar 

  • 12.

    Traveset, A. & Richardson, D. M. Mutualistic interactions and biological invasions. Annu. Rev. Ecol. Evol. Syst. 45, 89–113 (2014).

    Article  Google Scholar 

  • 13.

    Herrera, C. M. Seed dispersal by vertebrates. In Plant—animal interactions, an evolutionary approach (eds Herrera, C. & Pellmyr, O.) 185–209 (Wiley, Oxford, 2002).

    Google Scholar 

  • 14.

    Vidal, M. M., Pires, M. M. & Guimarães, J. P. R. Large vertebrates as the missing components of seed-dispersal networks. Biol. Conserv. 163, 42–48 (2013).

    Article  Google Scholar 

  • 15.

    Moleón, M. et al. Rethinking megafauna. Proc. R. Soc. B 287, 20192643 (2020).

    PubMed  Article  Google Scholar 

  • 16.

    Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2018).

    Article  Google Scholar 

  • 17.

    Chen, S. C. & Moles, A. T. A mammoth mouthful? A test of the idea that larger animals ingest larger seeds. Glob. Ecol. Biogeogr. 24, 1269–1280 (2015).

    Article  Google Scholar 

  • 18.

    Dirzo, R. et al. Defaunation of the anthropocene. Science 345, 401–406 (2014).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 19.

    Galetti, M. et al. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340, 1086–1090 (2013).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 20.

    Pasitschniak-Arts, M. Ursus arctos. Mamm. Species 439, 1–10 (1993).

    Article  Google Scholar 

  • 21.

    Steyaert, S. M. J. G., Endrestøl, A., Hacklaender, K., Swenson, J. E. & Zedrosser, A. The mating system of the brown bear Ursus arctos. Mamm. Rev. 42, 12–34 (2012).

    Article  Google Scholar 

  • 22.

    Bojarska, K. & Selva, N. Spatial patterns in brown bears Ursus arctos diet: the role of geographical and environmental factors. Mamm. Rev. 42, 120–143 (2012).

    Article  Google Scholar 

  • 23.

    Blanchard, B. N. Size and growth patterns of the Yellowstone grizzly bear. Bears Their Biol. Manag. 7, 99–107 (1987).

    Article  Google Scholar 

  • 24.

    Palomero, G., Fernández-Gil, A. & Naves, J. Reproductive rates of brown bears in the Cantabrian Mountains, Spain. Bears Their Biol. Manag. 9, 129–132 (1997).

    Article  Google Scholar 

  • 25.

    Welch, C. A., Keay, J., Kendall, K. C. & Robbins, C. T. Constraints on frugivory by bears. Ecology 78, 1105–1119 (1997).

    Article  Google Scholar 

  • 26.

    Hilderbrand, G. V. et al. The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can. J. Zool. 77, 132–138 (1999).

    Article  Google Scholar 

  • 27.

    McLoughlin, P. D., Ferguson, S. H. & Messier, F. Intraspecific variation in home range overlap with habitat quality: a comparison among brown bear populations. Evol. Ecol. 14, 39–60 (2000).

    Article  Google Scholar 

  • 28.

    Nomura, F. & Higashi, S. Effects of food distribution on the habitat usage of a female brown bear Ursus arctos yesoensis in a beech-forest zone of northernmost Japan. Ecol. Res. 15, 209–217 (2000).

    Article  Google Scholar 

  • 29.

    Hertel, A. G. et al. Berry production drives bottom-up effects on body mass and reproductive success in an omnivore. Oikos 127, 197–207 (2017).

    Article  Google Scholar 

  • 30.

    Zalewski, A. Geographical and seasonal variation in food habits and prey size of European pine martens. In Gilbert Martens and Fishers (Martes) in Human-Altered Environments (eds Harrison, D. J. & Fuller, A. K. P.) 77–98 (Springer, Boston, 2005).

    Google Scholar 

  • 31.

    Soe, E. et al. Europe-wide biogeographical patterns in the diet of an ecologically and epidemiologically important mesopredator, the red fox Vulpes vulpes: a quantitative review. Mamm. Rev. 47, 198–211 (2017).

    Article  Google Scholar 

  • 32.

    Jaroszewicz, B., Pirożnikow, E. & Sondej, I. Endozoochory by the guild of ungulates in Europe’s primeval forest. Forest Ecol. Manag. 305, 21–28 (2013).

    Article  Google Scholar 

  • 33.

    Lundgren, E. J., Ramp, D., Ripple, W. J. & Wallach, A. D. Introduced megafauna are rewilding the Anthropocene. Ecography 41, 857–866 (2018).

    Article  Google Scholar 

  • 34.

    Kowalczyk, R. et al. Foraging plasticity allows a large herbivore to persist in a sheltering forest habitat: DNA metabarcoding diet analysis of the European bison. Forest Ecol. Manag. 449, 117474 (2019).

    Article  Google Scholar 

  • 35.

    Gebert, C. & Verheyden-Tixier, H. Variation of diet composition of red deer (Cervus elaphus L.) in Europe. Mamm. Rev. 31, 189–201 (2008).

    Article  Google Scholar 

  • 36.

    Cosyns, E., Delporte, A., Lens, L. & Hoffmann, M. Germination success of temperate grassland species after gut passage through ungulate and rabbit guts. J. Ecol. 93, 353–361 (2005).

    Article  Google Scholar 

  • 37.

    Albrecht, J. et al. Humans and climate change drove the Holocene decline of the brown bear. Sci. Rep. 7, 1–11 (2017).

    CAS  Article  Google Scholar 

  • 38.

    Hertel, A. G. et al. Bears and berries: species-specific selective foraging on a patchily distributed food resource in a human-altered landscape. Behav. Ecol. Sociobiol. 70, 831–842 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Valido, A., Schaefer, H. M. & Jordano, P. Colour, design and reward: phenotypic integration of fleshy fruit displays. J. Evol. Biol. 24, 751–760 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    MacHutchon, A. G. & Wellwood, D. W. Grizzly bear food habits in the northern Yukon, Canada. Ursus 14, 225–235 (2003).

    Google Scholar 

  • 41.

    Sato, Y., Mano, T. & Takatsuki, S. Stomach contents of brown bears Ursus arctos in Hokkaido, Japan. Wildl. Biol. 11, 133–144 (2005).

    Article  Google Scholar 

  • 42.

    Lalleroni, A., Quenette, P.-Y., Daufresne, T., Pellerin, M. & Baltzinger, C. Exploring the potential of brown bear (Ursus arctos) as a long-distance seed disperser: a pilot study in South-Western Europe. Mammalia 81, 1–9 (2017).

    Article  Google Scholar 

  • 43.

    Baldwin, R. A. & Bender, L. C. Foods and nutritional components of diets of black bear in Rocky Mountain National Park, Colorado. Can. J. Zool. 87, 1000–1008 (2009).

    CAS  Article  Google Scholar 

  • 44.

    Koike, S. Long-term trends in food habits of Asiatic black bears in the Misaka Mountains on the Pacific coast of central Japan. Mamm. Biol. 75, 17–28 (2010).

    Article  Google Scholar 

  • 45.

    Campos-Arceiz, A. & Blake, S. Megagardeners of the forest—the role of elephants in seed dispersal. Acta Oecol. 37, 542–553 (2011).

    Article  ADS  Google Scholar 

  • 46.

    Willson, M. F. & Gende, S. M. Seed dispersal by brown bears, Ursus arctos, in southeastern Alaska. Can. Field-Nat. 118, 499–503 (2004).

    Article  Google Scholar 

  • 47.

    Naoe, S. et al. Mountain-climbing bears protect cherry species from global warming through vertical seed dispersal. Curr. Biol. 26, 315–316 (2016).

    Article  CAS  Google Scholar 

  • 48.

    Naoe, S. et al. Downhill seed dispersal by temperate mammals: a potential threat to plant escape from global warming. Sci. Rep. 9, 1–11 (2019).

    CAS  Article  Google Scholar 

  • 49.

    McConkey, K. R. & O’Farrill, G. Loss of seed dispersal before the loss of seed dispersers. Biol. Conserv. 201, 38–49 (2016).

    Article  Google Scholar 

  • 50.

    Skuban, M., Finďo, S. & Kajba, M. Human impacts on bear feeding habits and habitat selection in the Poľana Mountains, Slovakia. Eur. J. Wildl. Res. 62, 353–364 (2016).

    Article  Google Scholar 

  • 51.

    Štofík, J., Merganič, J., Merganičová, K., Bučko, J. & Saniga, M. Brown bear winter feeding ecology in the area with supplementary feeding—Eastern Carpathians (Slovakia). Pol. J. Ecol. 64, 277–288 (2016).

    Article  Google Scholar 

  • 52.

    Selva, N. et al. Supplementary ungulate feeding affects movement behavior of brown bears. Basic Appl. Ecol. 24, 68–76 (2017).

    Article  Google Scholar 

  • 53.

    López-Bao, J. V. & González-Varo, J. P. Frugivory and spatial patterns of seed deposition by carnivorous mammals in anthropogenic landscapes: a multi-scale approach. PLoS ONE 6, e14569 (2011).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 54.

    Traveset, A. & Willson, M. F. Effect of birds and bears on seed germination of fleshy-fruited plants in temperate rainforests of southeast Alaska. Oikos 80, 89–95 (1997).

    Article  Google Scholar 

  • 55.

    Nowak, J. & Crone, E. E. It is good to be eaten by a bear: effects of ingestion on seed germination. Am. Midl. Nat. 167, 205–209 (2012).

    Article  Google Scholar 

  • 56.

    Steyaert, S. M. J. G., Hertel, A. G. & Swenson, J. E. Endozoochory by brown bears stimulates germination in bilberry. Wildl. Biol. 2019, wlb.00573 (2019).

    Article  Google Scholar 

  • 57.

    Samuels, I. A. & Levey, D. J. Effects of gut passage on seed germination: do experiments answer the questions they ask?. Funct. Ecol. 19, 365–368 (2005).

    Article  Google Scholar 

  • 58.

    Valido, A. & Olesen, J. M. The importance of lizards as frugivores and seed dispersers. In Seed Dispersal: Theory and its Application in a Changing World (eds Dennis, A. J. et al.) 124–147 (CAB International, Wallingford, 2007).

    Google Scholar 

  • 59.

    Traveset, A. Effect of seed passage through vertebrate frugivores’ guts on germination: a review. Perspect. Plant. Ecol. Syst. 1, 151–190 (1998).

    Article  Google Scholar 

  • 60.

    Eriksson, O. & Fröborg, H. “Windows of opportunity” for recruitment in long-lived clonal plants: experimental studies of seedling establishment in Vaccinium shrubs. Can J. Bot. 74, 1369–1374 (1996).

    Article  Google Scholar 

  • 61.

    Jansen, P. A. et al. Thieving rodents as substitute dispersers of megafaunal seeds. PNAS 109, 12610–12615 (2012).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 62.

    Koike, S. et al. Seed removal and survival in Asiatic black bears Ursus thibetanus scats: effect of rodents as secondary seed dispersers. Wildlife Biol. 18, 24–34 (2012).

    Article  Google Scholar 

  • 63.

    Bartoń, K. A., Zwijacz-Kozica, T., Zięba, F., Sergiel, A. & Selva, N. Bears without borders: long-distance movement in human-dominated landscapes. Glob. Ecol. Conserv. 17, e00541 (2019).

    Article  Google Scholar 

  • 64.

    Willson, M. F. & Traveset, A. The ecology of seed dispersal. In Seeds: The Ecology of Regeneration in Plant Communities 2nd edn (ed. Fenner, M.) 85–111 (CAB International, Wallingford, 2000).

    Google Scholar 

  • 65.

    Elfström, M., Støen, O.-G., Zedrosser, A., Warrington, I. & Swenson, J. E. Gut retention times in captive brown bears Ursus arctos. Wildl. Biol. 19, 317–324 (2013).

    Article  Google Scholar 

  • 66.

    Koike, S. et al. Estimate of the seed shadow created by the Asiatic black bear Ursus thibetanus and its characteristics as a seed disperser in Japanese cool-temperate forest. Oikos 120, 280–290 (2010).

    Article  Google Scholar 

  • 67.

    Hickey, J. R., Flynn, R. W., Buskirk, S. W., Gerow, K. G. & Willson, M. F. An evaluation of a mammalian predator, Martes americana, as a disperser of seeds. Oikos 87, 499–508 (1999).

    Article  Google Scholar 

  • 68.

    Terakawa, M., Isagi, Y., Matsui, K. & Yumoto, T. Microsatellite analysis of the maternal origin of Myrica rubra seeds in the feces of Japanese macaques. Ecol. Res. 24, 663–670 (2009).

    CAS  Article  Google Scholar 

  • 69.

    González-Varo, J. P., López-Bao, J. V. & Guitián, J. Functional diversity among seed dispersal kernels generated by carnivorous mammals. J. Anim. Ecol. 82, 562–571 (2013).

    PubMed  Article  Google Scholar 

  • 70.

    Tsuji, Y., Okumura, T., Kitahara, M. & Jiang, Z. Estimated seed shadow generated by Japanese martens (Martes melampus): comparison with forest-dwelling animals in Japan. Zool. Sci. 33, 352–357 (2016).

    Article  Google Scholar 

  • 71.

    Santini, L. et al. Ecological correlates of dispersal distance in terrestrial mammals. Hystrix 24, 181–186 (2013).

    Google Scholar 

  • 72.

    Bunney, K., Bond, W. J. & Henley, M. Seed dispersal kernel of the largest surviving megaherbivore—the African savanna elephant. Biotropica 49, 395–401 (2017).

    Article  Google Scholar 

  • 73.

    Galetti, et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2018).

    PubMed  Article  Google Scholar 

  • 74.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).

    Article  Google Scholar 

  • 75.

    Nin, S., Petrucci, W. A., Del Bubba, M., Ancillotti, C. & Giordani, E. Effects of environmental factors on seed germination and seedling establishment in bilberry (Vaccinium myrtillus L.). Sci. Hortic. 226, 241–249 (2017).

    Article  Google Scholar 

  • 76.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 77.

    Oksanen, J. et al. Vegan package: community ecology package. R package version 2.5–6 (2019).

  • 78.

    Silva, L. J. D. & Medeiros, A. D. D. SeedCalc, a new automated R software tool for germination and seedling length data processing. J. Seed. Sci. 41, 250–257 (2019).

    Article  Google Scholar 

  • 79.

    R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2017).

  • 80.

    South, A. rworldmap: a new R package for mapping global data. R J. 3, 35–43 (2011).

    Article  Google Scholar 

  • 81.

    IUCN SSC Bear Specialist Group. Ursus arctos. The IUCN Red List of Threatened Species. Version 2017-3 (2017). http://www.iucnredlist.org (Downloaded in May 2020).


  • Source: Ecology - nature.com

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92

    Concept for a hybrid-electric plane may reduce aviation’s air pollution problem