in

Preference, performance, and chemical defense in an endangered butterfly using novel and ancestral host plants

  • 1.

    Strauss, S. Y., Lau, J. A. & Carroll, S. P. Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities? Evolutionary responses of natives to introduced species. Ecol. Lett. 9, 357–374 (2006).

    PubMed  Article  Google Scholar 

  • 2.

    Smith, D. C. Heritable divergence of Rhagoletis pomonella host races by seasonal asynchrony. Nature 336, 66–67 (1988).

    ADS  Article  Google Scholar 

  • 3.

    Filchak, K. E., Roethele, J. B. & Feder, J. L. Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407, 739–742 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 4.

    Carroll, S. P., Dingle, H., Famula, T. R. & Fox, C. W. Genetic architecture of adaptive differentiation in evolving host races of the soapberry bug, Jadera haematoloma. in Microevolution Rate, Pattern, Process (eds. Hendry, A. P. & Kinnison, M. T.) vol. 8 257–272 (Springer Netherlands, 2001).

  • 5.

    Nice, C. C., Fordyce, J. A., Shapiro, A. M. & Ffrench-Constant, R. Lack of evidence for reproductive isolation among ecologically specialised lycaenid butterflies. Ecol. Entomol. 27, 702–712 (2002).

    Article  Google Scholar 

  • 6.

    Graves, S. D. & Shapiro, A. M. Exotics as host plants of the California butterfly fauna. 110, 413–433 (2003).

    Google Scholar 

  • 7.

    Thomas, J. A., Simcox, D. J. & Hovestadt, T. Evidence based conservation of butterflies. J. Insect Conserv. 15, 241–258 (2011).

    Article  Google Scholar 

  • 8.

    Battin, J. When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conserv. Biol. 18, 1482–1491 (2004).

    Article  Google Scholar 

  • 9.

    Casagrande, R.A. & Dacey, J. E. Monarch butterfly oviposition on swallow-worts (Vincetoxicum spp.). Environ. Entomol. 36, 631–636 (2007).

  • 10.

    Davis, S. L. & Cipollini, D. Do mothers always know best? Oviposition mistakes and resulting larval failure of Pieris virginiensis on Alliaria petiolata, a novel, toxic host. Biol. Invasions 16, 1941–1950 (2014).

    Article  Google Scholar 

  • 11.

    Janzen, D. H. On ecological fitting. Oikos 45, 308 (1985).

    Article  Google Scholar 

  • 12.

    Singer, M. C. & Parmesan, C. Lethal trap created by adaptive evolutionary response to an exotic resource. Nature 557, 238–241 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 13.

    Thomas, C. D. et al. Incorporation of a European weed into the diet of a North American herbivore. Evolution 41, 892–901 (1987).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Bowers, M. D., Stamp, N. E. & Collinge, S. K. Early stage of host range expansion by a specialist herbivore Euphydryas phaeton. Ecology 73, 526–536 (1992).

    Article  Google Scholar 

  • 15.

    Severns, P. M. & Breed, G. A. Behavioral consequences of exotic host plant adoption and the differing roles of male harassment on female movement in two checkerspot butterflies. Behav. Ecol. Sociobiol. 68, 805–814 (2014).

    Article  Google Scholar 

  • 16.

    United States Fish and Wildlife Service. Endangered and threatened wildlife and plants; proposed designation of critical habitat for the bay checkerspot butterfly (Euphydryas editha bayensis); proposed rule. (2000).

  • 17.

    United States Fish and Wildlife Service. Endangered and threatened wildlife and plants; designation of critical habitat for the Quino checkerspot butterfly (Euphydryas editha quino). (2002).

  • 18.

    United States Fish and Wildlife Service. ESA Proposed Listing Taylor’s Checkerspot. Fed. Regist. 77, (2012).

  • 19.

    Ehrlich, P. R. & Hanski, I. On the wings of checkerspots: a model system for population biology. Oxford University Press (2004).

  • 20.

    Singer, M. C., Ng, D. & Thomas, C. D. Heritability of oviposition preference and its relationship to offspring performance within a single insect population. Evolution 42, 977–985 (1988).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Singer, M. C. & McBride, C. S. Multitrait, host-associated divergence among sets of butterfly populations: implications for reproductive isolation and ecological speciation. Evol. Int. J. Org. Evol. 64, 921–933 (2009).

    Article  Google Scholar 

  • 22.

    Peñuelas, J., Sardans, J., Stefanescu, C., Parella, T. & Filella, I. Lonicera implexa leaves bearing naturally laid eggs of the specialist herbivore Euphydryas aurinia have dramatically greater concentrations of iridoid glycosides than other leaves. J. Chem. Ecol. 32, 1925–1933 (2006).

    PubMed  Article  CAS  Google Scholar 

  • 23.

    Nieminen, M., Suomi, J., Nouhuys, S. V., Sauri, P. & Riekkola, M.-L. Effect of iridoid glycoside content on oviposition host plant choice and parasitism in a specialist herbivore. J. Chem. Ecol. 22 (2003).

  • 24.

    Bowers, M. D. Unpalatability as a defense strategy of Euphydryas phaeton (Lepidoptera: Nymphalidae). Evolution 34, 586–600 (1980).

    PubMed  Article  Google Scholar 

  • 25.

    Bowers, M. D. Unpalatability as a defense strategy of western checkerspot butterflies (Euphydryas Scudder, Nymphalidae). Evolution 35, 367–375 (1981).

    PubMed  Article  Google Scholar 

  • 26.

    Dobler, S., Petschenka, G. & Pankoke, H. Coping with toxic plant compounds–the insect’s perspective on iridoid glycosides and cardenolides. Phytochemistry 72, 1593–1604 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Bowers, M. D. & Stamp, N. E. Effects of plant age, genotype and herbivory on Plantago performance and chemistry. Ecology 74, 1778–1791 (1993).

    Article  Google Scholar 

  • 28.

    Dyer, L. A. & Deane Bowers, M. The importance of sequestered iridoid glycosides as a defense against an ant predator. J. Chem. Ecol. 22, 1527–1539 (1996).

  • 29.

    Dunwiddie, P. W. et al. Intertwined fates: Opportunities and challenges in the linked recovery of two rare species. Nat. Areas J. 36, 207–215 (2016).

    Article  Google Scholar 

  • 30.

    Stinson, D. Washington State Status Report for the Mazama Pocket Gopher, Streaked Horned Lark, and Taylor’s Checkerspot. Washington Department of Fish and Wildlife (2005).

  • 31.

    Cavers, P. B., Bassett, I. J. & Crompton, C. W. The biology of Canadian weeds 47. Plantago lanceolata L. Can. J. Plant Sci. 60, 1269–1282 (1980).

  • 32.

    Haan, N. L., Bakker, J. D., Dunwiddie, P. W. & Linders, M. J. Instar-specific effects of host plants on survival of endangered butterfly larvae. Ecol. Entomol. 43, 742–753 (2018).

    Article  Google Scholar 

  • 33.

    Danby, W. H. Food plant of Melitaea taylori Edw. Can. Entomol. 22, 121–122 (1890).

    Article  Google Scholar 

  • 34.

    Buckingham, D. A., Linders, M., Landa, C., Mullen, L. & LeRoy, C. Oviposition preference of endangered Taylor’s checkerspot butterflies (Euphydryas editha taylori) using native and non-native hosts. Northwest Sci. 90, 491–497 (2016).

    Article  Google Scholar 

  • 35.

    Mead, E. W. & Stermitz, F. R. Content of iridoid glycosides in different parts of Castilleja. Phytochemistry 32, 1155–1158 (1993).

    CAS  Article  Google Scholar 

  • 36.

    Barclay, E., Arnold, M., Anderson, M. J. & Shepherdson, D. Husbandry manual: Taylor’s checkerspot (Euphydryas editha taylori)) (Oregon Zoo, Portland OR, 2009).

    Google Scholar 

  • 37.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (2020).

  • 38.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, (2015).

  • 39.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Lenth, R. V. Least-Squares Means: The R package lsmeans. J. Stat. Softw. 69, (2016).

  • 41.

    Bowers, M. D. & Stamp, N. E. Effect of hostplant genotype and predators on iridoid glycoside content of pupae of a specialist insect herbivore, Junonia coenia (Nymphalidae). Biochem. Syst. 25, 571–580 (1997).

    CAS  Article  Google Scholar 

  • 42.

    Bowers, M. D. Hostplant suitability and defensive chemistry of the Catalpa sphinx Ceratomia catalpae. J. Chem. Ecol. 29, 2359–2367 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Oksanen, J. et al. Package ‘vegan’. Community Ecol. Package Version 2, 1–295 (2013).

    Google Scholar 

  • 44.

    Yoon, S. & Read, Q. Consequences of exotic host use: Impacts on Lepidoptera and a test of the ecological trap hypothesis. Oecologia 181, 985–996 (2016).

    ADS  PubMed  Article  Google Scholar 

  • 45.

    Cogni, R. Resistance to plant invasion? A native specialist herbivore shows preference for and higher fitness on an introduced host. Biotropica 42, 188–193 (2010).

    Article  Google Scholar 

  • 46.

    Agosta, S. J. & Klemens, J. A. Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol. Lett. 11, 1123–1134 (2008).

    PubMed  Article  Google Scholar 

  • 47.

    Bowers, M. D., Boockvar, K. & Collinge, S. K. Iridoid glycosides of Chelone glabra (Scrophulariaceae) and their sequestration by larvae of a Sawfly, Tenthredo grandis (Tenthredinidae). J. Chem. Ecol. 19, 815–815 (1993).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Singer, M. C. Quantification of host preference by manipulation of oviposition behavior in the butterfly Euphydryas editha. Oecologia 52, 224–229 (1982).

    ADS  PubMed  Article  Google Scholar 

  • 49.

    Parmesan, C., Singer, M. C. & Harris, I. A. N. Absence of adaptive learning from the oviposition foraging behaviour of a checkerspot butterfly. Anim. Behav. 50, 161–175 (1995).

    Article  Google Scholar 

  • 50.

    Quintero, C., Lampert, E. C. & Bowers, M. D. Time is of the essence: direct and indirect effects of plant ontogenetic trajectories on higher trophic levels. Ecology 95, 2589–2602 (2014).

    Article  Google Scholar 

  • 51.

    Gardner, D. R. & Stermitz, F. R. Host plant utilization and iridoid glycoside sequestration by Euphdryas anicia (Lepidoptera: Nymphalidae). J. Chem. Ecol. 14, 2147–2168 (1988).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Haan, N. L., Bakker, J. D. & Bowers, M. D. Hemiparasites can transmit indirect effects from their host plants to herbivores. Ecology 99, 399–410 (2018).

    PubMed  Article  Google Scholar 

  • 53.

    Haan, N. L. Ecological interactions between Euphydryas editha larvae and their host plants (University of Washington, Seattle, 2017).

    Google Scholar 

  • 54.

    Bowers, M. D. Aposematic caterpillars: life-styles of the warningly colored and unpalatable, in Caterpillars: ecological and evolutionary constraints on foraging (eds. Stamp, N.S., and Casey, T.M.). Chapman & Hall (1993).

  • 55.

    Theodoratus, D. H. & Bowers, M. D. Effects of sequestered iridoid glycosides on prey choice of the prairie wolf spider Lycosa carolinensis. J. Chem. Ecol. 25, 283–295 (1999).

    CAS  Article  Google Scholar 

  • 56.

    Cirak, C. et al. Phenological changes in the chemical content of wild and greenhouse-grown Hypericum pruinatum: hypericins, hyperforins and phenolic acids. Res Rev J Bot. 4, 37–47 (2015).

    ADS  Google Scholar 

  • 57.

    Richards, L. A. et al. Synergistic effects of iridoid glycosides on the survival, development and immune response of a specialist caterpillar, Junonia coenia (Nymphalidae). J. Chem. Ecol. 38, 1276–1284 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Smilanich, A. M., Dyer, L. A., Chambers, J. Q. & Bowers, M. D. Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecol. Lett. 12, 612–621 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Hamilton, N.E. & Ferry, M. ggtern: Ternary diagrams using ggplot2. J. Stat. Softw., Code Snippets, 87, 1–17 (2018).


  • Source: Ecology - nature.com

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92

    Concept for a hybrid-electric plane may reduce aviation’s air pollution problem