in

Introduction of Varroa destructor has not altered honey bee queen mating success in the Hawaiian archipelago

  • 1.

    Roddy, K. M. & Arita-Tsutsumi, L. A history of honey bees in the Hawaiian islands. J. Hawaiian Pac. Agric. 8, 59–70 (1997).

    Google Scholar 

  • 2.

    Danka, R. G., Hellmich, R. L., Rinderer, T. E. & Collins, A. M. Diet-selection ecology of tropically and temperately adapted honey-bees. Anim. Behav. 35, 1858–1863 (1987).

    Article  Google Scholar 

  • 3.

    Roberts, J. M. K., Anderson, D. L. & Durr, P. A. Absence of deformed wing virus and Varroa destructor in Australia provides unique perspectives on honeybee viral landscapes and colony losses. Sci. Rep. https://doi.org/10.1038/s41598-017-07290-w (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    de Guzman, L. I., Rinderer, T. E. & Stelzer, J. A. DNA evidence of the origin of Varroa jacobsoni Oudemans in the Americas. Biochem. Genet. 35, 327–335. https://doi.org/10.1023/a:1021821821728 (1997).

    PubMed  Article  Google Scholar 

  • 5.

    Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. USA. 116, 1792–1801. https://doi.org/10.1073/pnas.1818371116 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119 (2010).

    PubMed  Article  Google Scholar 

  • 7.

    Sammataro, D., Gerson, U. & Needham, G. Parasitic mites of honey bees: Life history, implications, and impact. Annu. Rev. Entomol. 45, 519–548 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Amdam, G. V., Hartfelder, K., Norberg, K., Hagen, A. & Omholt, S. W. Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): A factor in colony loss during overwintering?. J. Econ. Entomol. 97, 741–747 (2004).

    PubMed  Article  Google Scholar 

  • 9.

    Dejong, D., Dejong, P. H. & Goncalves, L. S. Weight-loss and other damage to developing worker honeybees from infestation with Varroa jacobsoni. J. Apic. Res. 21, 165–167. https://doi.org/10.1080/00218839.1982.11100535 (1982).

    Article  Google Scholar 

  • 10.

    Ramadan, M. M., Reimer, N. J., Oishi, D. E., Young, C. L. & Heu, R. A. Varroa Mite Varroa destructor Anderson and Trueman (Acari: Varroidae) (Springer, New York, 2019).

    Google Scholar 

  • 11.

    Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306. https://doi.org/10.1126/science.1220941 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 12.

    Seeley, T. D. Honey bees of the Arnot Forest: A population of feral colonies persisting with Varroa destructor in the northeastern United States. Apidologie 38, 19–29 (2007).

    Article  Google Scholar 

  • 13.

    Brettell, L. E. & Martin, S. J. Oldest Varroa tolerant honey bee population provides insight into the origins of the global decline of honey bees. Sci. Rep. https://doi.org/10.1038/srep45953 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Nielsen, D. I. Genetic structure of feral honey bee (Apis mellifera L.) populations in California Ph.D. thesis, University of California, Davis (2000).

  • 15.

    Doebler, S. A. The rise and fall of the honeybee: Mite infestations challenge the bee and the beekeeping industry. Bioscience 50, 738–742. https://doi.org/10.1641/0006-3568(2000)050[0738:Trafot]2.0.Co;2 (2000).

    Article  Google Scholar 

  • 16.

    Fuchs, S. Preference for drone brood cells by Varroa jacobsoni oud in colonies of Apis-Mellifera-Carnica. Apidologie 21, 193–199 (1990).

    Article  Google Scholar 

  • 17.

    Boot, W. J., Calis, J. N. M. & Beetsma, J. Differential periods of varroa mite invasion into worker and drone cells of honey-bees. Exp. Appl. Acarol. 16, 295–301 (1992).

    Article  Google Scholar 

  • 18.

    Estoup, A., Solignac, M. & Cornuet, J. Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc. R. Soc. Lond. B 258, 1–7 (1994).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Tarpy, D. R., Nielsen, R. & Nielsen, D. I. A scientific note on the revised estimates of effective paternity frequency in Apis. Insectes Soc. 51, 203–204 (2004).

    Article  Google Scholar 

  • 20.

    Akyol, E., Yeninar, H. & Kaftanoglu, O. Live weight of queen honey bees (Apis mellifera L.) predicts reproductive characteristics. J. Kansas Entomol. Soc. 81, 92–100. https://doi.org/10.2317/jkes-705.13.1 (2008).

    Article  Google Scholar 

  • 21.

    Amiri, E., Strand, M. K., Rueppell, O. & Tarpy, D. R. Queen quality and the impact of honey bee diseases on queen health: Potential for interactions between two major threats to colony health. Insects. https://doi.org/10.3390/insects8020048 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Tarpy, D. R., Keller, J. J., Caren, J. R. & Delaney, D. A. Experimentally induced variation in the physical reproductive potential and mating success in honey bee queens. Insectes Soc. 58, 569–574. https://doi.org/10.1007/s00040-011-0180-z (2011).

    Article  Google Scholar 

  • 23.

    Hatjina, F. et al. A review of methods used in some European countries for assessing the quality of honey bee queens through their physical characters and the performance of their colonies. J. Apic. Res. 53, 337–363. https://doi.org/10.3896/ibra.1.53.3.02 (2014).

    Article  Google Scholar 

  • 24.

    De Souza, D. A. et al. Morphometric identification of queens, workers and intermediates in in vitro reared honey bees (Apis mellifera). PLoS ONE. https://doi.org/10.1371/journal.pone.0123663 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Woyke, J. Correlations between the age at which honeybee brood was grafted, characteristics of the resultant queens, and results of insemination. J. Apic. Res. 10, 45–55 (1971).

    Article  Google Scholar 

  • 26.

    Dedej, S., Hartfelder, K., Aumeier, P., Rosenkranz, P. & Engels, W. Caste determination is a sequential process: Effect of larval age at grafting on ovariole number, hind leg size and cephalic volatiles in the honey bee (Apis mellifera carnica). J. Apic. Res. 37, 183–190 (1998).

    Article  Google Scholar 

  • 27.

    Al-Lawati, H., Kamp, G. & Bienefeld, K. Characteristics of the spermathecal contents of old and young honeybee queens. J. Insect Physiol. 55, 116–121 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Tarpy, D. R., Keller, J. J., Caren, J. R. & Delaney, D. A. Assessing the mating “health” of commercial honey bee queens. J. Econ. Entomol. 105, 20–25 (2012).

    PubMed  Article  Google Scholar 

  • 29.

    Pettis, J. S., Rice, N., Joselow, K., vanEngelsdorp, D. & Chaimanee, V. Colony failure linked to low sperm viability in honey bee (Apis mellifera) queens and an exploration of potential causative factors. PLoS ONE. https://doi.org/10.1371/journal.pone.0147220 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Woyke, J. Natural and artificial insemination of queen honeybees. Bee World 43, 21–25 (1962).

    Article  Google Scholar 

  • 31.

    Delaney, D. A., Keller, J. J., Caren, J. R. & Tarpy, D. R. The physical, insemination, and reproductive quality of honey bee queens (Apis mellifera). Apidologie 42, 1–13. https://doi.org/10.1051/apido/2010027 (2011).

    Article  Google Scholar 

  • 32.

    McAfee, A. et al. Vulnerability of honey bee queens to heat-induced loss of fertility. Nat. Sustain. https://doi.org/10.1038/s41893-020-0493-x (2020).

    Article  Google Scholar 

  • 33.

    Chaimanee, V., Evans, J. D., Chen, Y., Jackson, C. & Pettis, J. S. Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. J. Insect Physiol. 89, 1–8 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Williams, G. R. et al. Neonicotinoid pesticides severely affect honey bee queens. Sci. Rep. https://doi.org/10.1038/srep14621 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Rangel, J. & Tarpy, D. R. The combined effects of miticides on the mating health of honey bee (Apis mellifera L.) queens. J. Apicult. Res. 54, 275–283. https://doi.org/10.1080/00218839.2016.1147218 (2015).

    Article  Google Scholar 

  • 36.

    Buechler, R. et al. Standard methods for rearing and selection of Apis mellifera queens. J. Apicult. Res. https://doi.org/10.3896/ibra.1.52.1.07 (2013).

    Article  Google Scholar 

  • 37.

    Lee, K. V., Goblirsch, M., McDermott, E., Tarpy, D. R. & Spivak, M. Is the brood pattern within a honey bee colony a reliable indicator of queen quality?. Insects. https://doi.org/10.3390/insects10010012 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    de Miranda, J. R. et al. Standard methods for virus research in Apis mellifera. J. Apicult. Res. https://doi.org/10.3896/ibra.1.52.4.22 (2013).

    Article  Google Scholar 

  • 39.

    Kevill, J. L. et al. The pathogen profiles of queen honey bees does not reflect those of their colonies workers. Insects 11, 382. https://doi.org/10.3390/insects11060382 (2020).

    PubMed Central  Article  Google Scholar 

  • 40.

    Evans, J. D. et al. Standard methods for molecular research in Apis mellifera. J. Apicult. Res. https://doi.org/10.3896/ibra.1.52.4.11 (2013).

    Article  Google Scholar 

  • 41.

    Jones, O. R. & Wang, J. COLONY: A program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.x (2010).

    PubMed  Article  Google Scholar 

  • 42.

    Nielsen, R., Tarpy, D. R. & Reeve, H. K. Estimating effective paternity number in social insects and the effective number of alleles in a population. Mol. Ecol. 12, 3157–3164 (2003).

    PubMed  Article  Google Scholar 

  • 43.

    Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49, 1–6 (2010).

    Article  Google Scholar 

  • 44.

    van Engelsdorp, D. & Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103, S80–S95 (2010).

    Article  Google Scholar 

  • 45.

    Ellis, J. D., Evans, J. D. & Pettis, J. Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. J. Apic. Res. 49, 134–136. https://doi.org/10.3896/ibra.1.49.1.30 (2010).

    Article  Google Scholar 

  • 46.

    Lee, K. V. et al. A national survey of managed honey bee 2013–2014 annual colony losses in the USA: Results from the Bee Informed Partnership. Apidologie. https://doi.org/10.1007/s13592-015-0356-z (2015).

    Article  Google Scholar 

  • 47.

    Steinhauer, N. et al. Drivers of colony losses. Curr. Opin. Insect Sci. 26, 142–148. https://doi.org/10.1016/j.cois.2018.02.004 (2018).

    PubMed  Article  Google Scholar 

  • 48.

    Tarpy, D. R., Delaney, D. A. & Seeley, T. D. Mating frequencies of honey bee queens (Apis mellifera L.) in a population of feral colonies in the northeastern United States. PLoS ONE. https://doi.org/10.1371/journal.pone.0118734 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Lensky, Y. & Demter, M. Mating flights of the queen honeybee (Apis mellifera) in a subtropical climate. Comp. Biochem. Physiol. 81, 229–241 (1985).

    Article  Google Scholar 

  • 50.

    USDA-NASS. (ed National Agricultural Statistics Service) (2018).

  • 51.

    DeGrandi-Hoffman, G. et al. Comparisons of pollen substitute diets for honey bees: Consumption rates by colonies and effects on brood and adult populations. J. Apic. Res. 47, 265–270. https://doi.org/10.3896/ibra.1.47.4.06 (2008).

    Article  Google Scholar 

  • 52.

    Loftus, J. C., Smith, M. L. & Seeley, T. D. How honey bee colonies survive in the wild: Testing the importance of small nests and frequent swarming. PLoS ONE. https://doi.org/10.1371/journal.pone.0150362 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Le Conte, Y. et al. Honey bee colonies that have survived Varroa destructor. Apidologie 38, 566–572 (2007).

    Article  Google Scholar 

  • 54.

    Chen, Y. P., Evans, J. & Feldlaufer, M. Horizontal and vertical transmission of viruses in the honeybee, Apis mellifera. J. Invertebr. Pathol. 92, 152–159 (2006).

    PubMed  Article  Google Scholar 

  • 55.

    de Miranda, J. R. & Fries, I. Venereal and vertical transmission of deformed wing virus in honeybees (Apis mellifera L.). J. Invertebr. Pathol. 98, 184–189 (2008).

    PubMed  Article  Google Scholar 

  • 56.

    Yue, C., Schroder, M., Bienefeld, K. & Genersch, E. Detection of viral sequences in semen of honeybees (Apis mellifera): Evidence for vertical transmission of viruses through drones. J. Invertebr. Pathol. 92, 105–108 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Amiri, E., Meixner, M. D. & Kryger, P. Deformed wing virus can be transmitted during natural mating in honey bees and infect the queens. Sci. Rep. https://doi.org/10.1038/srep33065 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Szalanski, A. L., Tripodi, A. D., Trammel, C. E. & Downey, D. Mitochondrial DNA genetic diversity of honey bees, Apis mellifera in Hawaii. Apidologie 47, 679–687. https://doi.org/10.1007/s13592-015-0416-4 (2016).

    CAS  Article  Google Scholar 

  • 59.

    Danka, R. G., Harris, J. W., Villalobos, E. & Glenn, T. Varroa destructor resistance of honey bees in Hawaii, USA, with different genetic proportions of Varroa Sensitive Hygiene (VSH). J. Apic. Res. 51, 288–290. https://doi.org/10.3896/ibra.1.51.3.13 (2012).

    Article  Google Scholar 

  • 60.

    Metz, B. N. & Tarpy, D. R. Reproductive senescence in drones of the honey bee (Apis mellifera). Insects. https://doi.org/10.3390/insects10010011 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Sturup, M., Baer-Imhoof, B., Nash, D. R., Boomsma, J. J. & Baer, B. When every sperm counts: Factors affecting male fertility in the honeybee Apis mellifera. Behav. Ecol. 24, 1192–1198. https://doi.org/10.1093/beheco/art049 (2013).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92

    Concept for a hybrid-electric plane may reduce aviation’s air pollution problem