in

Causal evidence for the adaptive benefits of social foraging in the wild

  • 1.

    Krause, J. & Ruxton, G. D. Living in Groups. (Oxford University Press, 2002).

  • 2.

    Alexander, R. D. The evolution of social behavior. Annu. Rev. Ecol. Evol. Syst. 5, 325–383 (1974).

    Article  Google Scholar 

  • 3.

    Aureli, F. et al. Fission‐fusion dynamics: new research frameworks. Curr. Anthropol. 49, 627–654 (2008).

    Article  Google Scholar 

  • 4.

    Cantor, M., Aplin, L. M. & Farine, D. R. A primer on the relationship between group size and group performance. Anim. Behav. 166, 139–146 (2020).

    Article  Google Scholar 

  • 5.

    MacNulty, D. R., Tallian, A., Stahler, D. R. & Smith, D. W. Influence of group size on the success of wolves hunting bison. PLoS ONE 9, e112884 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 6.

    Ashton, B. J., Thornton, A. & Ridley, A. R. Larger group sizes facilitate the emergence and spread of innovations in a group-living bird. Anim. Behav. 158, 1–7 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Morand-Ferron, J. & Quinn, J. L. Larger groups of passerines are more efficient problem solvers in the wild. PNAS 108, 15898–15903 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Treherne, J. E. & Foster, W. A. The effects of group size on predator avoidance in a marine insect. Anim. Behav. 28, 1119–1122 (1980).

    Article  Google Scholar 

  • 9.

    Grand, T. C. & Dill, L. M. The effect of group size on the foraging behaviour of juvenile coho salmon: reduction of predation risk or increased competition? Anim. Behav. 58, 443–451 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Liker, A. & Bokony, V. Larger groups are more successful in innovative problem solving in house sparrows. PNAS 106, 7893–7898 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Blumstein, D. T., Evans, C. S. & Daniel, J. C. An experimental study of behavioural group size effects in tammar wallabies, Macropus eugenii. Anim. Behav. 58, 351–360 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Rieucau, G. & Giraldeau, L.-A. Group size effect caused by food competition in nutmeg mannikins (Lonchura punctulata). Behav. Ecol. 20, 421–425 (2009).

    Article  Google Scholar 

  • 13.

    Stöwe, M., Bugnyar, T., Heinrich, B. & Kotrschal, K. Effects of group size on approach to novel objects in ravens (Corvus corax). Ethology 112, 1079–1088 (2006).

    Article  Google Scholar 

  • 14.

    Steinegger, M., Sarhan, H. & Bshary, R. Laboratory experiments reveal effects of group size on hunting performance in yellow saddle goatfish, Parupeneus cyclostomus. Anim. Behav. 168, 159–167 (2020).

    Article  Google Scholar 

  • 15.

    Giraldeau, L. A. & Caraco, T. Social Foraging Theory. (Princeton University Press, 2000).

  • 16.

    Monk, C. T. et al. How ecology shapes exploitation: a framework to predict the behavioural response of human and animal foragers along exploration–exploitation trade-offs. Ecology 21, 779–793 (2018).

    Google Scholar 

  • 17.

    Kendal, R. L., Coolen, I., Bergen, Y. & Laland, K. N. Trade‐offs in the adaptive use of social and asocial Learning. Adv. Study Behav. 35, 333–379 (2005).

    Article  Google Scholar 

  • 18.

    Ellis, S. et al. Mortality risk and social network position in resident killer whales: Sex differences and the importance of resource abundance. Proc. R. Soc. Lond. B 284, 20171313 (2017).

    Google Scholar 

  • 19.

    Caraco, T. Risk-sensitivity and foraging groups. Ecology 62, 527–531 (1981).

    Article  Google Scholar 

  • 20.

    Firth, J. A., Voelkl, B., Farine, D. R. & Sheldon, B. C. Experimental evidence that social relationships determine individual foraging behavior. Curr. Biol. 25, 3138–3143 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Magurran, A. E. & Seghers, B. H. A cost of sexual harassment in the guppy, Poecilia reticulata. Proc. R. Soc. Lond. B 258, 89–92 (1994).

    Article  Google Scholar 

  • 22.

    Snijders, L. et al. Females facilitate male food patch discovery in a wild fish population. J. Anim. Ecol. 88, 1950–1960 (2019).

    PubMed  Article  Google Scholar 

  • 23.

    Avarguès-Weber, A. & Chittka, L. Local enhancement or stimulus enhancement? Bumblebee social learning results in a specific pattern of flower preference. Anim. Behav. 97, 185–191 (2014).

    Article  Google Scholar 

  • 24.

    Dindo, M., Whiten, A. & Waal, F. B. Mde Social facilitation of exploratory foraging behavior in capuchin monkeys (Cebus apella). Am. J. Primatol. 71, 419–426 (2009).

    PubMed  Article  Google Scholar 

  • 25.

    Webster, M. M. & Laland, K. N. Social information, conformity and the opportunity costs paid by foraging fish. Behav. Ecol. Sociobiol. 66, 797–809 (2012).

    Article  Google Scholar 

  • 26.

    Trompf, L. & Brown, C. Personality affects learning and trade-offs between private and social information in guppies, Poecilia reticulata. Anim. Behav. 88, 99–106 (2014).

    Article  Google Scholar 

  • 27.

    Rieucau, G. & Giraldeau, L.-A. Persuasive companions can be wrong: the use of misleading social information in nutmeg mannikins. Behav. Ecol. 20, 1217–1222 (2009).

    Article  Google Scholar 

  • 28.

    Focardi, S. & Pecchioli, E. Social cohesion and foraging decrease with group size in fallow deer (Dama dama). Behav. Ecol. Sociobiol. 59, 84–91 (2005).

    Article  Google Scholar 

  • 29.

    Smith, J. E., Kolowski, J. M., Graham, K. E., Dawes, S. E. & Holekamp, K. E. Social and ecological determinants of fission–fusion dynamics in the spotted hyaena. Anim. Behav. 76, 619–636 (2008).

    Article  Google Scholar 

  • 30.

    Aplin, L. M., Farine, D. R., Morand-Ferron, J. & Sheldon, B. C. Social networks predict patch discovery in a wild population of songbirds. Proc. R. Soc. Lond. B 279, 4199–4205 (2012).

    CAS  Google Scholar 

  • 31.

    Webster, M. M. & Laland, K. N. Reproductive state affects reliance on public information in sticklebacks. Proc. R. Soc. Lond. B 278, 619–627 (2011).

    CAS  Google Scholar 

  • 32.

    Rands, S. A., Pettifor, R. A., Rowcliffe, J. M. & Cowlishaw, G. State–dependent foraging rules for social animals in selfish herds. Proc. R. Soc. Lond. B 271, 2613–2620 (2004).

    Article  Google Scholar 

  • 33.

    Lee, A. E. G. & Cowlishaw, G. Switching spatial scale reveals dominance-dependent social foraging tactics in a wild primate. PeerJ 5, e3462 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Janson, C. H. Social correlates of individual spatial choice in foraging groups of brown capuchin monkeys, Cebus apella. Anim. Behav. 40, 910–921 (1990).

    Article  Google Scholar 

  • 35.

    Overveld, T. et al. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8, 15155 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 36.

    Choudhury, S. & Black, J. M. Testing the behavioural dominance and dispersal hypothesis in Pochard. Ornis Scand. 22, 155–159 (1991).

    Article  Google Scholar 

  • 37.

    Milligan, N. D., Radersma, R., Cole, E. F. & Sheldon, B. C. To graze or gorge: consistency and flexibility of individual foraging tactics in tits. J. Anim. Ecol. 86, 826–836 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Mady, R. P. & Blumstein, D. T. Social security: are socially connected individuals less vigilant? Anim. Behav. 134, 79–85 (2017).

    Article  Google Scholar 

  • 39.

    Lührs, M.-L., Dammhahn, M. & Kappeler, P. Strength in numbers: males in a carnivore grow bigger when they associate and hunt cooperatively. Behav. Ecol. 24, 21–28 (2013).

    Article  Google Scholar 

  • 40.

    Reader, S. M. & Laland, K. N. Diffusion of foraging innovations in the guppy. Anim. Behav. 60, 175–180 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Smolla, M., Rosher, C., Gilman, R. T. & Shultz, S. Reproductive skew affects social information use. R. Soc. Open Sci. 6, 182084 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Snijders, L., Kurvers, R. H. J. M., Krause, S., Ramnarine, I. W. & Krause, J. Individual- and population-level drivers of consistent foraging success across environments. Nat. Ecol. Evol. 2, 1610–1618 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Barbosa, M. et al. Individual variation in reproductive behaviour is linked to temporal heterogeneity in predation risk. Proc. R. Soc. Lond. B 285, 20171499 (2018).

    Google Scholar 

  • 44.

    Dimitriadou, S., Croft, D. P. & Darden, S. K. Divergence in social traits in Trinidadian guppies selectively bred for high and low leadership in a cooperative context. Sci. Rep. 9, 1–12 (2019).

    CAS  Article  Google Scholar 

  • 45.

    Griffiths, S. W. & Magurran, A. E. Sex and schooling behaviour in the Trinidadian guppy. Anim. Behav. 56, 689–693 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Croft, D. P. et al. Mechanisms underlying shoal composition in the Trinidadian guppy, Poecilia reticulata. Oikos 100, 429–438 (2003).

    Article  Google Scholar 

  • 47.

    Croft, D. P., Krause, J. & James, R. Social networks in the guppy (Poecilia reticulata). Proc. R. Soc. Lond. B 271, S516–S519 (2004).

    Article  Google Scholar 

  • 48.

    Croft, D. P. et al. Social structure and co-operative interactions in a wild population of guppies (Poecilia reticulata). Behav. Ecol. Sociobiol. 59, 644–650 (2006).

    Article  Google Scholar 

  • 49.

    Piyapong, C. et al. Sex matters: a social context to boldness in guppies (Poecilia reticulata). Behav. Ecol. 21, 3–8 (2010).

    Article  Google Scholar 

  • 50.

    Harris, S., Ramnarine, I. W., Smith, H. G. & Pettersson, L. B. Picking personalities apart: estimating the influence of predation, sex and body size on boldness in the guppy Poecilia reticulata. Oikos 119, 1711–1718 (2010).

    Article  Google Scholar 

  • 51.

    Magurran, A. E. & Seghers, B. H. Sexual conflict as a consequence of ecology: evidence from guppy, Poecilia reticulata, populations in Trinidad. Proc. R. Soc. Lond. B 255, 31–36 (1994).

    Article  Google Scholar 

  • 52.

    Hawkins, E. R., Pogson‐Manning, L., Jaehnichen, C. & Meager, J. J. Social dynamics and sexual segregation of Australian humpback dolphins (Sousa sahulensis) in Moreton Bay. Qld. Mar. Mamm. Sci. 36, 500–521 (2020).

    Article  Google Scholar 

  • 53.

    Simpson, E. A. et al. Experience-independent sex differences in newborn macaques: females are more social than males. Sci. Rep. 6, 19669 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Reader, S. M. & Lefebvre, L. Social learning and sociality. Behav. Brain Sci. 24, 353–355 (2001).

    Article  Google Scholar 

  • 55.

    Wilkinson, A., Kuenstner, K., Mueller, J. & Huber, L. Social learning in a non-social reptile (Geochelone carbonaria). Biol. Lett. 6, 614–616 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Webster, M. M., Laland, K. N. & Skelhorn, J. Social information use and social learning in non-grouping fishes. Behav. Ecol. 28, 1547–1552 (2017).

    Article  Google Scholar 

  • 57.

    Hester, F. J. Effects of food supply on fecundity in the female guppy, Lebistes reticulatus (Peters). J. Fish. Res. Bd. Can. 21, 757–764 (1964).

    Article  Google Scholar 

  • 58.

    Magurran, A. E. Evolutionary Ecology: The Trinidadian Guppy. (Oxford University Press, 2005).

  • 59.

    Dammhahn, M. & Kappeler, P. M. Females go where the food is: does the socio-ecological model explain variation in social organisation of solitary foragers? Behav. Ecol. Sociobiol. 63, 939–952 (2009).

    Article  Google Scholar 

  • 60.

    Webster, M. M. & Laland, K. N. Local enhancement via eavesdropping on courtship displays in male guppies, Poecilia reticulata. Anim. Behav. 86, 75–83 (2013).

    Article  Google Scholar 

  • 61.

    Zajonc, R. B. Social facilitation. Science 149, 269–274 (1965).

    CAS  PubMed  Article  Google Scholar 

  • 62.

    Crook, J. H. & Gartlan, J. S. Evolution of primate societies. Nature 210, 1200–1203 (1966).

    CAS  PubMed  Article  Google Scholar 

  • 63.

    Emlen, S. T. & Oring, L. W. Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223 (1977).

    CAS  PubMed  Article  Google Scholar 

  • 64.

    Abrahams, M. V. The trade-off between foraging and courting in male guppies. Anim. Behav. 45, 673–681 (1993).

    Article  Google Scholar 

  • 65.

    Pitcher, T. J., Magurran, A. E. & Winfield, I. J. Fish in larger shoals find food faster. Behav. Ecol. Sociobiol. 10, 149–151 (1982).

    Article  Google Scholar 

  • 66.

    Pollard, K. A. & Blumstein, D. T. Time allocation and the evolution of group size. Anim. Behav. 76, 1683–1699 (2008).

    Article  Google Scholar 

  • 67.

    Cresswell, W. & Quinn, J. L. Predicting the optimal prey group size from predator hunting behaviour. J. Anim. Ecol. 80, 310–319 (2011).

    PubMed  Article  Google Scholar 

  • 68.

    Botham, M. S., Kerfoot, C. J., Louca, V. & Krause, J. Predator choice in the field; grouping guppies, Poecilia reticulata, receive more attacks. Behav. Ecol. Sociobiol. 59, 181–184 (2005).

    Article  Google Scholar 

  • 69.

    Ward, A. J. W., Herbert-Read, J. E., Sumpter, D. J. T. & Krause, J. Fast and accurate decisions through collective vigilance in fish shoals. PNAS 108, 2312–2315 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 70.

    Deacon, A. E., Jones, F. A. M. & Magurran, A. E. Gradients in predation risk in a tropical river system. Curr. Zool. 64, 213–221 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Grether, G. F., Millie, D. F., Bryant, M. J., Reznick, D. N. & Mayea, W. Rain forest canopy cover, resource availability, and life history evolution in guppies. Ecology 82, 1546–1559 (2001).

    Article  Google Scholar 

  • 72.

    Croft, D. P. et al. Sex-biased movement in the guppy (Poecilia reticulata). Oecologia 137, 62–68 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Grether, G. F., Kasahara, S., Kolluru, G. R. & Cooper, E. L. Sex–specific effects of carotenoid intake on the immunological response to allografts in guppies (Poecilia reticulata). Proc. R. Soc. Lond. B 271, 45–49 (2004).

    CAS  Article  Google Scholar 

  • 74.

    Kodric-Brown, A. Dietary carotenoids and male mating success in the guppy: an environmental component to female choice. Behav. Ecol. Sociobiol. 25, 393–401 (1989).

    Article  Google Scholar 

  • 75.

    Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).

    Article  Google Scholar 

  • 76.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • 77.

    Snijders L., et al. 2020 Data from: Causal evidence for the adaptive benefits of social foraging in the wild. OSF. https://osf.io/csajg

  • 78.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 79.

    Therneau, T. M. coxme: Mixed Effects Cox Models. R package version 2.2-16. (2020).

  • 80.

    Therneau, T. M. A Package for Survival Analysis in S_. version 2.38. (2015).

  • 81.

    Brooks, M. et al. glmmTMB balances speed and flexibility among packages for zero-inflated Generalized Linear Mixed Modeling. R. J. 9, 378–400 (2017).

    Article  Google Scholar 

  • 82.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).


  • Source: Ecology - nature.com

    Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips

    “Futurizing” undergraduate teaching