in

Cryptic terrestrial fungus-like fossils of the early Ediacaran Period

  • 1.

    Kenrick, P., Wellman, C. H., Schneider, H. & Edgecombe, G. D. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Philos. Trans. R. Soc. B 367, 519–536 (2012).

    Article  Google Scholar 

  • 2.

    Kennedy, M., Droser, M., Mayer, L. M., Pevear, D. & Mrofka, D. Late Precambrian oxygenation; inception of the clay mineral factory. Science 311, 1446–1449 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Naranjo-Ortiz, M. A. & Gabaldón, T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol. Rev. 94, 1443–1476 (2019).

    PubMed  Article  Google Scholar 

  • 4.

    Heckman, D. S. et al. Molecular evidence for the early colonization of land by fungi and plants. Science 293, 1129–1133 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Lutzoni, F. et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat. Commun. 9, 5451 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Chang, Y. et al. Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol. Evol. 7, 1590–1601 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Taylor, T. N., Krings, M. & Taylor, E. L. Fossil Fungi. 1st edn (Academic Press, 2015).

  • 8.

    Berbee, M. L. et al. Genomic and fossil windows into the secret lives of the most ancient fungi. Nat. Rev. Microbiol. 18, 717–730 (2020).

    Google Scholar 

  • 9.

    Bengtson, S. et al. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nat. Ecol. Evol. 1, 0141 (2017).

    Article  Google Scholar 

  • 10.

    Loron, C. C. et al. Early fungi from the Proterozoic era in Arctic Canada. Nature 570, 232–235 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 11.

    Bonneville, S. et al. Molecular identification of fungi microfossils in a Neoproterozoic shale rock. Sci. Adv. 6, eaax7599 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Butterfield, N. J. Probable Proterozoic fungi. Paleobiology 31, 165–182 (2005).

    Article  Google Scholar 

  • 13.

    Yuan, X., Xiao, S. & Taylor, T. N. Lichen-like symbiosis 600 million years ago. Science 308, 1017–1020 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 14.

    Smith, M. R. Cord-forming Palaeozoic fungi in terrestrial assemblages. Bot. J. Linn. Soc. 180, 452–460 (2016).

    Article  Google Scholar 

  • 15.

    Krings, M., Harper, C. J. & Taylor, E. L. Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov. Philos. Trans. R. Soc. B 373, 20160500 (2018).

    Article  Google Scholar 

  • 16.

    Condon, D. et al. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Zhou, C., Huyskens, M. H., Lang, X., Xiao, S. & Yin, Q.-Z. Calibrating the terminations of Cryogenian global glaciations. Geology 47, 251–254 (2019).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Jiang, G., Kennedy, M. J., Christie-Blick, N., Wu, H. & Zhang, S. Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo cap carbonate in South China. J. Sediment. Res. 76, 978–995 (2006).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Hoffman, P. F. & Macdonald, F. A. Sheet-crack cements and early regression in Marinoan (635 Ma) cap dolostones: regional benchmarks of vanishing ice-sheets? Earth Planet. Sci. Lett. 300, 374–384 (2010).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Gan, T. et al. Miniature paleo-speleothems from the earliest Ediacaran (635 Ma) Doushantuo cap dolostone in South China and their implications for terrestrial ecosystems. EarthArXiv, https://doi.org/10.31223/osf.io/srkcp (2019).

  • 21.

    Zhou, C., Bao, H., Peng, Y. & Yuan, X. Timing the deposition of 17O-depleted barite at the aftermath of Nantuo glacial meltdown in South China. Geology 38, 903–906 (2010).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Zhou, G., Luo, T., Zhou, M., Xing, L. & Gan, T. A ubiquitous hydrothermal episode recorded in the sheet-crack cements of a Marinoan cap dolostone of South China: implication for the origin of the extremely 13C-depleted calcite cement. J. Asian Earth Sci. 134, 63–71 (2017).

    ADS  Article  Google Scholar 

  • 23.

    Muscente, A. D., Czaja, A. D., Tuggle, J., Winkler, C. & Xiao, S. Manganese oxides resembling microbial fabrics and their implications for recognizing inorganically preserved microfossils. Astrobiology 18, 249–258 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 24.

    García-Ruiz, J. M. et al. Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302, 1194 (2003).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 25.

    Rouillard, J., García-Ruiz, J. M., Gong, J. & van Zuilen, M. A. A morphogram for silica-witherite biomorphs and its application to microfossil identification in the early earth rock record. Geobiology 16, 279–296 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Hofmann, B. A., Farmer, J. D., Blanckenburg, F. V. & Fallick, A. E. Subsurface filamentous fabrics: an evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology. Astrobiology 8, 87–117 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 27.

    Rasmussen, B. Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405, 676–679 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 28.

    Schopf, J. W. et al. Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution’s null hypothesis. Proc. Natl Acad. Sci. USA 112, 2087–2092 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 29.

    Teske, A. & Nelson, D. C. in The Prokaryotes: Volume 6: Proteobacteria: Gamma Subclass (eds Dworkin, M. et al.) 784–810 (Springer, 2006).

  • 30.

    Zhou, X. et al. Biogenic iron-rich filaments in the quartz veins in the uppermost Ediacaran Qigebulake Formation, Aksu area, northwestern Tarim Basin, China: implications for iron oxidizers in subseafloor hydrothermal systems. Astrobiology 15, 523–537 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 31.

    Thurston, E. L. & Ingram, L. O. Morphology and fine structure of Fischerella ambigua. J. Phycol. 7, 203–210 (1971).

    Google Scholar 

  • 32.

    Iyengar, M. O. P. & Desikachary, T. V. Mastigocladopsis jogensis gen. et sp. nov., a new member of the stigonemataceæ. Proc. Ind. Acad. Sci. B 24, 55–59 (1946).

    Google Scholar 

  • 33.

    Komárek, J. Cyanoprokaryota: 3. Teil/Part 3: Heterocytous Genera. (Springer Spektrum, 2013).

  • 34.

    Castenholz, R. W. in Bergey’s Manual of Systematic Bacteriology (eds Boone, et al.) 473–599 (Springer, 2001).

  • 35.

    Bartley, J. K. Actualistic taphonomy of cyanobacteria: implications for the Precambrian fossil record. Palaios 11, 571–586 (1996).

    ADS  Article  Google Scholar 

  • 36.

    Bold, H. C. & Wynne, M. J. Introduction to the Algae: Structure and Reproduction. (Prentice-Hall, 1978).

  • 37.

    Butterfield, N. J. A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology 30, 231–252 (2004).

    Article  Google Scholar 

  • 38.

    Tang, Q., Pang, K., Yuan, X. & Xiao, S. A one-billion-year-old multicellular chlorophyte. Nat. Ecol. Evol. 4, 543–549 (2020).

    PubMed  Article  Google Scholar 

  • 39.

    Leliaert, F. & Coppejans, E. A revision of Cladophoropsis Børgesen (Siphonocladales, Chlorophyta). Phycologia 45, 657–679 (2006).

    Article  Google Scholar 

  • 40.

    Zhao, Z.-J., Zhu, H., Hu, Z.-Y. & Liu, G.-X. Occurrence of true branches in Rhizoclonium (Cladophorales, Ulvophyceae) and the reinstatement of Rhizoclonium pachydermum Kjellman. Phytotaxa 166, 273–284 (2014).

    Article  Google Scholar 

  • 41.

    Entwisle, T. J. A monograph of Vaucheria (Vaucheriaceae, Chrysophyta) in south-eastern mainland Australia. Aust. Syst. Bot. 1, 1–77 (1988).

    Article  Google Scholar 

  • 42.

    Boo, S. M. & Cho, T. O. The Morphology of Griffithsia tomo-yamadae Okamura (Ceramiaceae, Rhodophyta): a little-known species from the northeast Pacific. Bot. Mar. 44, 109–118 (2001).

    Article  Google Scholar 

  • 43.

    Ferrer, N. C. & Caceres, E. J. Spirogyra salmonispora sp. nov. (Zygnematophyceae, Chiorophyta), a new freshwater species of the section Conjugata. Arch. Protistenk. 146, 101–105 (1995).

    Article  Google Scholar 

  • 44.

    Li, Q., Chen, X., Jiang, Y. & Jiang, C. in Actinobacteria: Basics and Biotechnological Applications (eds Dhanasekaran, D. & Jiang, Y.) 59–86 (IntechOpen, 2016).

  • 45.

    Goodfellow, M. et al. Bergey’s Manual of Systematic Bacteriology: Volume Five The Actinobacteria, Part A and B. (Springer-Verlag, 2012).

  • 46.

    Erikson, D. The morphology, cytology, and taxonomy of the Actinomycetes. Annu. Rev. Microbiol. 3, 23–54 (1949).

    Article  Google Scholar 

  • 47.

    Gregory, K. F. Hyphal anastomosis and cytological aspects of Streptomyces scabies. Can. J. Microbiol. 2, 649–655 (1956).

    Article  Google Scholar 

  • 48.

    Higgins, M. L. & Silvey, J. K. G. Slide culture observations of two freshwater Actinomycetes. Trans. Am. Micros. Soc. 85, 390–398 (1966).

    CAS  Article  Google Scholar 

  • 49.

    Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    O’Donnell, K. L. Zygomycetes in Culture. (Department of Botany, University of Georgia, 1979).

  • 51.

    Fischer, M. S. & Glass, N. L. Communicate and fuse: how filamentous fungi establish and maintain an interconnected mycelial network. Front. Microbiol. 10, 619 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Webster, J. in Introduction to Fungi (3rd Edn.) (eds Webster, J. & Weber, R.) 165–225 (Cambridge University Press, 2007).

  • 53.

    Drake, H. et al. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures. Nat. Commun. 8, 55 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 54.

    Bengtson, S. et al. Deep-biosphere consortium of fungi and prokaryotes in Eocene subseafloor basalts. Geobiology 12, 489–496 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Ivarsson, M. et al. Fossilized fungi in subseafloor Eocene basalts. Geology 40, 163–166 (2012).

    ADS  CAS  Article  Google Scholar 

  • 56.

    Northup, D. et al. Biological investigations in Lechuguilla Cave. NSS Bull. 56, 54–63 (1994).

    Google Scholar 

  • 57.

    Duane, M. J. Unusual preservation of crustaceans and microbial colonies in a vadose zone, northwest Morocco. Lethaia 36, 21–32 (2003).

    Article  Google Scholar 

  • 58.

    Kretzschmar, M. Fossile pilze in eisen-stromatolithen von warstein (rheinisches schiefergebirge). Facies 7, 237–259 (1982).

    Article  Google Scholar 

  • 59.

    Nieves-Rivera, Á. M., Santos-Flores, C. J., Dugan, F. M. & Miller, T. E. Guanophilic fungi in three caves of southwestern Puerto Rico. Int. J. Speleol. 38, 61–70 (2009).

    Article  Google Scholar 

  • 60.

    Nováková, A. Microscopic fungi isolated from the Domica Cave system (Slovak Karst National Park, Slovakia). A review. Int. J. Speleol. 38, 71–82 (2009).

    Article  Google Scholar 

  • 61.

    Popović, S. et al. Cyanobacteria, algae and microfungi present in biofilm from Božana Cave (Serbia). Int. J. Speleol. 44, 141–149 (2015).

    Article  Google Scholar 

  • 62.

    Schopf, J. W. Microflora of the Bitter Springs Formation, late Precambrian, central Australia. J. Paleontol. 42, 651–688 (1968).

    Google Scholar 

  • 63.

    Strother, P. K. Systematics and evolutionary significance of some new cryptospores from the Cambrian of eastern Tennessee, USA. Rev. Palaeobot. Palynol. 227, 28–41 (2016).

    Article  Google Scholar 

  • 64.

    Prave, A. R. Life on land in the Proterozoic: evidence from the Torridonian rocks of northwest Scotland. Geology 30, 811–814 (2002).

    ADS  Article  Google Scholar 

  • 65.

    Blank, C. E. Origin and early evolution of photosynthetic eukaryotes in freshwater environments: reinterpreting Proterozoic paleobiology and biogeochemical processes in light of trait evolution. J. Phycol. 49, 1040–1055 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 66.

    Sánchez-Baracaldo, P., Raven, J. A., Pisani, D. & Knoll, A. H. Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc. Natl. Acad. Sci. USA 114, E7737–E7745 (2017).

    PubMed  Article  CAS  Google Scholar 

  • 67.

    Föllmi, K. B. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Sci. Rev. 40, 55–124 (1996).

    ADS  Article  Google Scholar 

  • 68.

    Sahoo, S. K. et al. Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489, 546–549 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 69.

    Guo, Z., Peng, X., Czaja, A. D., Chen, S. & Ta, K. Cellular taphonomy of well-preserved Gaoyuzhuang microfossils: a window into the preservation of ancient cyanobacteria. Precambrian Res. 304, 88–98 (2018).

    ADS  CAS  Article  Google Scholar 

  • 70.

    Czaja, A. D., Beukes, N. J. & Osterhout, J. T. Sulfur-oxidizing bacteria prior to the Great Oxidation Event from the 2.52 Ga Gamohaan Formation of South Africa. Geology 44, 983–986 (2016).

    ADS  CAS  Article  Google Scholar 

  • 71.

    Pang, K. et al. The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology 11, 499–510 (2013).

    CAS  PubMed  Google Scholar 

  • 72.

    Zhang, J. et al. Improved precision and spatial resolution of sulfur isotope analysis using NanoSIMS. J. Anal. Spectrom. 20, 1934–1943 (2014).

    CAS  Article  Google Scholar 

  • 73.

    Chen, L. et al. Extreme variation of sulfur isotopic compositions in pyrite from the Qiuling sediment-hosted gold deposit, West Qinling orogen, central China: an in situ SIMS study with implications for the source of sulfur. Mineral. Depos. 50, 643–656 (2015).

    ADS  CAS  Article  Google Scholar 

  • 74.

    Roberts, N. M. W. & Walker, R. J. U-Pb geochronology of calcite-mineralized faults: absolute timing of rift-related fault events on the northeast Atlantic margin. Geology 44, 531–534 (2016).

    ADS  CAS  Article  Google Scholar 

  • 75.

    Roberts, N. M. W. et al. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochem. Geophys. Geosyst. 18, 2807–2814 (2017).

    ADS  CAS  Article  Google Scholar 

  • 76.

    Hu, Z. et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J. Anal. Spectrom. 23, 1093–1101 (2008).

    CAS  Article  Google Scholar 

  • 77.

    Liu, Y. et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 55, 1535–1546 (2010).

    CAS  Article  Google Scholar 

  • 78.

    Zhang, Y. & Yuan, X. New data on multicellular thallophytes and fragments of cellular tissues from late Proterozoic phosphate rocks, South China. Lethaia 25, 1–18 (1992).

    Article  Google Scholar 

  • 79.

    Nie, W., Ma, D., Pan, J., Zhou, J. & Wu, K. δ13C excursions of phosphorite-bearing rocks in Neoproterozoic-Early Cambrian interval in Guizhou, South China: implications for palaeoceanic evolutions. J. Nanjing Univ. Nat. Sci. 42, 257–268 (2006).

    CAS  Google Scholar 

  • 80.

    Barfod, G. H. et al. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth Planet. Sci. Lett. 201, 203–212 (2002).

    ADS  CAS  Article  Google Scholar 

  • 81.

    Igisu, M. et al. Micro-FTIR spectroscopic signatures of bacterial lipids in Proterozoic microfossils. Precambrian Res. 173, 19–26 (2009).

    ADS  CAS  Article  Google Scholar 

  • 82.

    Wang, X.-H. Interfacial electrochemistry of pyrite oxidation and flotation: II. FTIR studies of xanthate adsorption on pyrite surfaces in neutral pH solutions. J. Colloid Interface Sci. 171, 413–428 (1995).

    ADS  CAS  Article  Google Scholar 

  • 83.

    Igisu, M. et al. FTIR microspectroscopy of Ediacaran phosphatized microfossils from the Doushantuo Formation, Weng’an, South China. Gondwana Res. 25, 1120–1138 (2014).

    ADS  CAS  Article  Google Scholar 

  • 84.

    Beyssac, O., Goffé, B., Chopin, C. & Rouzaud, J. N. Raman spectra of carbonaceous material in metasediments: a new geothermometer. J. Metamorphic. Geol. 20, 859–871 (2002).

    ADS  CAS  Article  Google Scholar 

  • 85.

    Turcotte, S. B. et al. Application of Raman spectroscopy to metal-sulfide surface analysis. Appl. Opt. 32, 935–938 (1993).

    ADS  CAS  PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    Mercury methylation by metabolically versatile and cosmopolitan marine bacteria

    3 Questions: Ernest Moniz on the future of climate and energy under the Biden-Harris administration