in

Novel gene rearrangement in the mitochondrial genome of Muraenesox cinereus and the phylogenetic relationship of Anguilliformes

  • 1.

    Mehta, R. S. Ecomorphology of the moray bite: Relationship between dietary extremes and morphological diversity. Physiol. Biochem. Zool. 82, 90–103 (2009).

    PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 2.

    Mehta, R. S. & Wainwright, P. C. Raptorial jaws in the throat help moray eels swallow large prey. Nature 449, 79–82 (2007).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 3.

    Robins, C. R. The phylogenetic relationships of the anguilliform fishes. Fishes Western N. Atl. 1, 9–23 (1989).

    Google Scholar 

  • 4.

    Greenwood, P. H. Notes on the anatomy and classification of elopomorph fishes. Bull. Mus. Comp. Zool. 32, 65–102 (1977).

  • 5.

    Nelson, G. J. Relationships of clupeomorphs, with remarks on the structure of the lower jaw in fishes. Interrelat. Fishes 333–349 (1973).

  • 6.

    Inoue, J. G. et al. Deep-ocean origin of the freshwater eels. Biol. Let. 6, 363–366. https://doi.org/10.1098/rsbl.2009.0989 (2010).

    Article  Google Scholar 

  • 7.

    Santini, F. et al. A multi-locus molecular timescale for the origin and diversification of eels (Order: Anguilliformes). Mol. Phylogenet. Evol. 69, 884–894. https://doi.org/10.1016/j.ympev.2013.06.016 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Inoue, J. G., Miya, M., Tsukamoto, K. & Nishida, M. Complete Mitochondrial DNA Sequence of Conger myriaster (Teleostei: Anguilliformes): Novel gene order for vertebrate mitochondrial genomes and the phylogenetic implications for Anguilliform Families. J. Mol. Evol. 52, 311–320 (2001).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 9.

    Tang, K. L. & Fielitz, C. Phylogeny of moray eels (Anguilliformes: Muraenidae), with a revised classification of true eels (Teleostei: Elopomorpha: Anguilliformes). Mitochondrial DNA. 24, 55–66 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Russell, B. & Houston, W. Offshore fishes of the Arafura Sea. Beagle Rec. Mus. Art Galleries Northern Territory 6, 69–84 (1989).

    Google Scholar 

  • 11.

    Chen, D., Ye, Y., Chen, J., Zhan, P. & Lou, Y. Molecular nutritional characteristics of vinasse pike eel (Muraenesox cinereus) during pickling. Food Chem. 224, 359–364. https://doi.org/10.1016/j.foodchem.2016.12.089 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Lu, Z. Z. et al. Complete mitochondrial genome of Ophichthus brevicaudatus reveals novel gene order and phylogenetic relationships of Anguilliformes. Int. J. Biol. Macromol. 135, 609–618. https://doi.org/10.1016/j.ijbiomac.2019.05.139 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Bibb, M., Etten, R., Wright, C., Walberg, M. & Clayton, D. Sequence and gene organization of mouse mitochondrial DNA. Cell 26, 167–180. https://doi.org/10.1016/0092-8674(81)90300-7 (1981).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Anderson, S. B. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465. https://doi.org/10.1038/290457a0 (1981).

    CAS  Article  PubMed  ADS  PubMed Central  Google Scholar 

  • 16.

    Roe, B. A., Ma, D. P., Wilson, R. K. & Wong, F. H. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J. Biol. Chem. 260, 9759–9774 (1985).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Brown, W., George, M. J. & Wilson, A. C. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 76, 1967–1971. https://doi.org/10.1073/pnas.76.4.1967 (1979).

    CAS  Article  PubMed  ADS  PubMed Central  Google Scholar 

  • 18.

    Macey, J. R., Larson, A., Ananjeva, N. B., Fang, Z. & Papenfuss, T. J. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol. Biol. Evol. 14, 91–104. https://doi.org/10.1093/oxfordjournals.molbev.a025706 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Zhang, J. Y., Zhang, L. P., Yu, D. N., Storey, K. B. & Zheng, R. Q. Complete mitochondrial genomes of Nanorana taihangnica and N. yunnanensis (Anura: Dicroglossidae) with novel gene arrangements and phylogenetic relationship of Dicroglossidae. BMC Evol. Biol. 18, 1–13 (2018).

    Article  CAS  Google Scholar 

  • 20.

    Yan, J., Li, H. & Zhou, K. Evolution of the mitochondrial genome in snakes: Gene rearrangements and phylogenetic relationships. BMC Genom. 9, 569. https://doi.org/10.1186/1471-2164-9-569 (2008).

    CAS  Article  Google Scholar 

  • 21.

    Liu, J., Yu, J., Zhou, M. & Yang, J. Complete mitochondrial genome of Japalura flaviceps: Deep insights into the phylogeny and gene rearrangements of Agamidae species. Int. J. Biol. Macromol. 125, 423–431. https://doi.org/10.1016/j.ijbiomac.2018.12.068 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 22.

    Verkuil, Y. I., Piersma, T. & Baker, A. J. A novel mitochondrial gene order in shorebirds (Scolopacidae, Charadriiformes). Mol. Phylogenet. Evol. 57, 411–416. https://doi.org/10.1016/j.ympev.2010.06.010 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Eberhard, J. R. & Wright, T. F. Rearrangement and evolution of mitochondrial genomes in parrots. Mol. Phylogenet. Evol. 94, 34–46 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 24.

    Pääbo, S., Thomas, W. K., Whitfield, K. M., Kumazawa, Y. & Wilson, A. C. Rearrangements of mitochondrial transfer RNA genes in marsupials. J. Mol. Evol. 33, 426–430. https://doi.org/10.1007/bf02103134 (1991).

    Article  PubMed  ADS  PubMed Central  Google Scholar 

  • 25.

    Gong, L., Shi, W., Yang, M., Li, D. & Kong, X. Novel gene arrangement in the mitochondrial genome of Bothus myriaster(Pleuronectiformes: Bothidae): Evidence for the dimer-mitogenome and non-random loss model. Mitochondrial DNA Part A. 27, 3089–3092 (2015).

    Article  CAS  Google Scholar 

  • 26.

    Miya, M. N. Organization of the Mitochondrial Genome of a Deep-Sea Fish, Gonostoma gracile (Teleostei: Stomiiformes): First example of transfer RNA gene rearrangements in Bony Fishes. Mar. Biotechnol. 1, 416–0426 (1999).

    CAS  Article  Google Scholar 

  • 27.

    Shi, W., Miao, X. G. & Kong, X. Y. A novel model of double replications and random loss accounts for rearrangements in the Mitogenome of Sssamariscus latus (Teleostei: Pleuronectiformes). BMC Genom. 15, 352 (2014).

    Article  CAS  Google Scholar 

  • 28.

    Kong, X. et al. A novel rearrangement in the mitochondrial genome of tongue sole, Cynoglossus semilaevis: Control region translocation and a tRNA gene inversion. Genome. 52, 975–984. https://doi.org/10.1139/g09-069 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Gong, L., Shi, W., Si, L. Z. & Kong, X. Y. Rearrangement of mitochondrial genome in fishes. Zool. Res. 34, 666–673 (2013).

    CAS  Google Scholar 

  • 30.

    Inoue, J. G., Masaki, M., Katsumi, T. & Mutsumi, N. evolution of the deep-sea gulper eel mitochondrial genomes: Large-scale gene rearrangements originated within the eels. Mol. Biol. Evol. 20, 1917–1924 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Ishikawa, S., Kimura, Y., Tokai, T., Tsukamoto, K. & Nishida, M. Gene rearrangement around the control region in the mitochondrial genome of conger myriaster. Fish. Sci. 66, 1186–1188 (2002).

    Article  Google Scholar 

  • 32.

    Miya, M., Kawaguchi, A. & Nishida, M. Mitogenomic exploration of higher teleostean phylogenies: A case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol. Biol. Evol. 18, 1993–2009 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Miya, M. T. et al. Major patterns of higher teleostean phylogenies: A new perspective based on 100 complete mitochondrial DNA sequences. Mol. Phylogenet. Evol. 26, 121–138 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Poulton, J. et al. Families of mtDNA re-arrangements can be detected in patients with mtDNA deletions: Duplications may be a transient intermediate form. Hum. Mol. Genet. 2, 23–30 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Lunt, D. H. & Hyman, B. C. Animal mitochondrial DNA recombination. Nature 387, 247 (1997).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 36.

    Ladoukakis, E. D. & Zouros, E. Recombination in animal mitochondrial DNA: Evidence from published sequences. Mol. Biol. Evol. 18, 2127–2131 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Sammler, S., Bleidorn, C. & Tiedemann, R. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination. BMC Genom. 12, 35. https://doi.org/10.1186/1471-2164-12-35 (2011).

    CAS  Article  Google Scholar 

  • 38.

    Atsushi, K. et al. Phylogeny, recombination, and mechanisms of stepwise mitochondrial genome reorganization in mantellid frogs from madagascar. Mol. Biol. Evol. 5, 874–891 (2008).

    Google Scholar 

  • 39.

    Arndt, A. & Smith, M. J. Mitochondrial gene rearrangement in the sea cucumber genus Cucumaria. Mol. Biol. Evol. 8, 1009–1016 (1998).

    Article  Google Scholar 

  • 40.

    Moritz, C., Dowling, T. E. & Brown, W. M. Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Annu. Rev. Ecol. Syst. 18, 269–292 (1987).

    Article  Google Scholar 

  • 41.

    Erin, E. S. et al. Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes. Mol. Phylogenet. Evol. 64, 342–356. https://doi.org/10.1016/j.ympev.2012.04.009 (2012).

    Article  Google Scholar 

  • 42.

    Mauro, D. S., Gower, D. J., Rafael, Z. & Mark, W. A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. Mol. Biol. Evol. 23, 227–234 (2006).

    Article  CAS  Google Scholar 

  • 43.

    Lavrov, D. V., Boore, J. L. & Brown, W. M. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: Duplication and nonrandom loss. Mol. Biol. Evol. 19, 163–169 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Smith, M. J., Arndt, A., Gorski, S. & Fajber, E. The phylogeny of echinoderm classes based on mitochondrial gene arrangements. J. Mol. Evol. 36, 545–554 (1993).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 45.

    Schierup, M. H. & Hein, J. Consequences of recombination on traditional phylogenetic analysis. Genetics 156, 879–891 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Zhi, J. J. et al. Comparative mitochondrial genomics of snakes: Extraordinary substitution rate dynamics and functionality of the duplicate control region. BMC Evol. Biol. 7, 123. https://doi.org/10.1186/1471-2148-7-123 (2007).

    CAS  Article  Google Scholar 

  • 47.

    Shi, W., Dong, X. L., Wang, Z. M., Miao, X. G. & Kong, X. Y. Complete mitogenome sequences of four flatfishes (Pleuronectiformes) reveal a novel gene arrangement of L-strand coding genes. BMC Evol. Biol. 13, 173 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Kumazawa, Y., Ota, H., Nishida, M. & Ozawa, T. The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. Genetics 150, 313–329 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Liu, Y. et al. Mitochondrial genome of the yellow catfish Pelteobagrus fulvidraco and insights into Bagridae phylogenetics. Genomics 111, 1258–1265. https://doi.org/10.1016/j.ygeno.2018.08.005 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Gong, L., Lü, Z. M., Guo, B. Y., Ye, Y. Y. & Liu, L. Q. Characterization of the complete mitochondrial genome of the tidewater goby, Eucyclogobius newberryi (Gobiiformes; Gobiidae; Gobionellinae) and its phylogenetic implications. Conserv. Genet. Resour. 10, 93–97 (2017).

    Article  Google Scholar 

  • 51.

    Lin, J. P. et al. The first complete mitochondrial genome of the sand dollar Sinaechinocyamus mai (Echinoidea: Clypeasteroida). Genomics 112, 1686–1693. https://doi.org/10.1016/j.ygeno.2019.10.007 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Prabhu, V. R. et al. Characterization of the complete mitochondrial genome of Barilius malabaricus and its phylogenetic implications. Genomics 112, 2154–2163. https://doi.org/10.1016/j.ygeno.2019.12.009 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 53.

    Xu, T. J., Cheng, Y. Z., Sun, Y. N., Shi, G. & Wang, R. X. The complete mitochondrial genome of bighead croaker, Collichthys niveatus (Perciformes, Sciaenidae): Structure of control region and phylogenetic considerations. Mol. Biol. Rep. 38, 4673–4685. https://doi.org/10.1007/s11033-010-0602-4 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Ojala, D., Montoya, J. & Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470–474. https://doi.org/10.1038/290470a0 (1981).

    CAS  Article  PubMed  ADS  PubMed Central  Google Scholar 

  • 55.

    Vandana, R. P. et al. Characterization of the complete mitochondrial genome of Barilius malabaricus and its phylogenetic implications. Genomics 112, 2154–2163 (2019).

    Google Scholar 

  • 56.

    Wang, X., Wang, J., He, S. & Mayden, R. L. The complete mitochondrial genome of the Chinese hook snout carp Opsariichthys bidens (Actinopterygii: Cypriniformes) and an alternative pattern of mitogenomic evolution in vertebrate. Gene 399, 0–19 (2007).

    CAS  Article  Google Scholar 

  • 57.

    Gong, L., Liu, B., Lü, Z. M. & Liu, L. Q. Characterization of the complete mitochondrial genome of Wuhaniligobius polylepis (Gobiiformes: Gobiidae) and phylogenetic studies of Gobiiformes. Mitochondrial DNA Part B 3, 1117–1119. https://doi.org/10.1080/23802359.2018.1519380 (2018).

    Article  Google Scholar 

  • 58.

    Dowton, M. & Campbell, N. J. H. Intramitochondrial recombination—is it why some mitochondrial genes sleep around?. Trends Ecol. Evol. 16, 269–271 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Kong, X. D. et al. A novel rearrangement in the mitochondrial genome of tongue sole, Cynoglossus semilaevis: Control region translocation and a tRNA gene inversion. Genome 52, 975–984. https://doi.org/10.1139/g09-069 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Shi, W., Gong, L., Wang, S. Y., Miao, X. G. & Kong, X. Y. Tandem duplication and random loss for mitogenome rearrangement in symphurus (Teleost: Pleuronectiformes). BMC Genom. 16, 355 (2015).

    Article  CAS  Google Scholar 

  • 61.

    Gong, L. et al. Large-scale mitochondrial gene rearrangements in the hermit crab Pagurus nigrofascia and phylogenetic analysis of the Anomura. Gene 695, 75–83 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Wang, Z. W. et al. Complete mitochondrial genome of Parasesarma affine (Brachyura: Sesarmidae): Gene rearrangements in Sesarmidae and phylogenetic analysis of the Brachyura. Int. J. Biol. Macromol. 118, 31–40 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Inoue, J. G., Miya, M., Tsukamoto, K. & Nishida, M. Evolution of the deep-sea gulper eel mitochondrial genomes: Large-scale gene rearrangements originated within the eels. Mol. Biol. Evol. 20, 1917–1924. https://doi.org/10.1093/molbev/msg206 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    Inoue, J. G. et al. Deep-ocean origin of the freshwater eels. Biol. Lett. 6, 363–366. https://doi.org/10.1098/rsbl.2009.0989 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    Chen, J. N., López, J. A., Lavoué, S., Miya, M. & Chen, W. J. Phylogeny of the Elopomorpha (Teleostei): Evidence from six nuclear and mitochondrial markers. Mol. Phylogenet. Evol. 70, 152–161 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Reece, J. S., Bowen, B. W., Smith, D. G. & Larson, A. Molecular phylogenetics of moray eels (Muraenidae) demonstrates multiple origins of a shell-crushing jaw (Gymnomuraena, Echidna) and multiple colonizations of the Atlantic Ocean. Mol. Phylogenet. Evol. 57, 829–835 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Johnson, G. D., Ida, H., Sakaue, J., Sado, T. & Asahida, T. A “living fossil” eel (Anguilliformes: Protanguillidae, fam. nov.) from an undersea cave in Palau. Proc. R. Soc. B Biol. Sci. 279, 934–943. https://doi.org/10.1098/rspb.2011.1289 (2012).

    Article  Google Scholar 

  • 68.

    Kumazawa, Y. & Nishida, M. Variations in mitochondrial tRNA gene organization of reptiles as phylogenetic markers. Mol. Biol. Evol. 12, 759–772. https://doi.org/10.1093/oxfordjournals.molbev.a040254 (1995).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 69.

    Loh, K. H. et al. Next-generation sequencing yields the complete mitochondrial genome of the longfang moray, Enchelynassa canina (Anguilliformes: Muraenidae). Mitochondrial DNA Part A 27, 2431–2432 (2015).

    Article  CAS  Google Scholar 

  • 70.

    Loh, K. H. et al. Next generation sequencing yields the complete mitochondrial genome of the Zebra moray, Gymnomuraena zebra (Anguilliformes: Muraenidae). Mitochondrial DNA Part A 27, 1–2 (2015).

    Google Scholar 

  • 71.

    Perna, N. T. & Kocher, T. D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41, 353–358 (1995).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 72.

    Sudhir, K. et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article  CAS  Google Scholar 

  • 73.

    Paul, S. & Wishart, D. S. Circular genome visualization and exploration using CGView. Bioinformatics 21, 537–539 (2004).

    Google Scholar 

  • 74.

    Nelson, J. S. Fishes of the Word 4th edn. (Wiley, New York, 2006).

    Google Scholar 

  • 75.

    Xia, X. DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Mol. Biol. Evol. 35, 1550–1552. https://doi.org/10.1093/molbev/msy073 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 76.

    Shi, W., Kong, X., Wang, Z. M. & Jiang, J. X. Utility of tRNA Genes from the Complete Mitochondrial Genome of Psetta maxima for Implying a Possible Sister-group Relationship to the Pleuronectiformes. Zool. Stud. 50, 665–681 (2011).

    CAS  Google Scholar 

  • 77.

    Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948. https://doi.org/10.1093/bioinformatics/btm404 (2007).

    CAS  Article  Google Scholar 

  • 78.

    Hall, T. BioEdit: A user-friendly biological sequence alignment program for Windows 95/98/NT. Nucleic Acids Sympos. Ser. 41, 95–98 (1999).

    CAS  Google Scholar 

  • 79.

    Gerard, T. & Jose, C. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).

    Article  CAS  Google Scholar 

  • 80.

    Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 81.

    Huelsenbeck, J. P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 82.

    Posada, D. & Crandall, K. A. MODELTEST: Testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 83.

    Nylander, J. A. A., Fredrik, R., Huelsenbeck, J. P. & Nieves-Aldrey, J. Bayesian phylogenetic analysis of combined data. Syst. Biol. 53, 47–67 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 84.

    Sitnikova, T., Rzhetsky, A. & Nei, M. Interior-branch and bootstrap tests of phylogenetic trees. Mol. Biol. Evol. 12, 319–333 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 85.

    Antezana, M. When being “most likely” is not enough: Examining the performance of three uses of the parametric bootstrap in phylogenetics. J. Mol. Evol. 56, 198–222 (2003).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Mercury methylation by metabolically versatile and cosmopolitan marine bacteria

    3 Questions: Ernest Moniz on the future of climate and energy under the Biden-Harris administration