Given that elasmobranchs are well known for the rate at which they replace their teeth, it is perhaps surprising that anterior teeth are retained long enough for dietarily informative microwear textures to develop. Yet our results demonstrate that tooth microwear textures vary with diet in C. taurus, and show that DMTA can provide an additional, potentially powerful tool for dietary discrimination in elasmobranchs. Furthermore, recent analysis indicates that C. taurus mostly consume prey in one piece30, implying less interaction of teeth with prey than would the case in animals that process their food before swallowing. We predict that for elasmobranchs that bite their prey the relationship between diet and microwear texture will be even stronger than that reported here.
Sampling individuals with different diets reveals increases in PC 1 values that in turn correspond to changes in a number of different ISO texture parameters. In general terms, as noted above, there is a trend towards ‘rougher’ surfaces with increases in the proportion of elasmobranchs in C. taurus diets, and with increasing consumption of benthic elasmobranchs30,31,32 (which may be associated with an increase in the amount of sediment consumed with prey). The increase in variance of PC1 values may also reflect increased diversity of prey types30,31,32 in larger individuals. To a degree, the greater variance might reflect the greater difference between maximum development of ‘rough’ microwear texture in a tooth near the end of its functional life compared to a smooth, recently erupted tooth. Either way, our results indicate that microwear texture tracks diet, but more work will be required to tease apart these additional factors.
Our analyses indicate that the tooth microwear textures of Specimen 5, from a different geographic area to other specimens, and for which we have no dietary data, are closely comparable to those of samples 1, 2 and 3, in terms of both values and variances. On this basis we interpret specimen 5 to have had a diet dominated by fish. The larger size of this specimen (at ca. 335 cm, larger than any other specimens analysed) lends further support to the hypothesis that microwear texture is tracking diet, and not size. Our dietary predictions regarding C. taurus from this area could be tested using traditional stomach contents, or stable isotope analyses, but this is outside the scope of the present study.
Our results also suggest that application of DMTA to analysis of the diet of individual sharks will produce more reliable results if multiple teeth are sampled rather than a single tooth. Comparing the six teeth of the aquarium individuals (fed only fish) with six teeth sampled randomly from the wild individuals (which had more varied diets) revealed significant differences in every sub-sampling (Supplementary Table S5). However the number of parameters displaying a significant difference between wild and aquarium teeth varied, and fewer significant differences than were found than analyses comparing the aquarium teeth to multiple teeth from each wild individual. This suggests that analyses based on single isolated teeth rather than those from jaws, a situation that would commonly arise in analyses of fossil teeth, have the potential to detect differences between populations and species with different diets, but will be less sensitive than analyses based on multiple teeth per individual. To a certain extent, this will be offset in collections of isolated fossil teeth because the vast majority are teeth that were shed at the end of the functional cycle, so there will be much less sampling of recently erupted teeth with less well-developed microwear textures. (Due to the rate of tooth replacement in elasmobranchs, the number of teeth shed by an individual in its lifetime outnumber the number of teeth in the individuals jaw at time of death by several orders of magnitude).
Drawing wider comparisons with microwear texture analyses in other groups of vertebrates, of the relationship between diet and 3D microwear texture based on ISO parameters, the number of parameters that differ between samples of C. taurus is larger than most previous studies, probably due to greater differences in material properties of food between the samples compared. Wild C. taurus consume a wider variety of prey than aquarium fed C. taurus. Wild individuals consume ‘harder’ prey items, whilst interacting with the natural environment. A wild individual consuming a benthic elasmobranch will have to bite through dermal denticles, a larger cartilage skeleton and inevitably will ingest some sediment during the process. In contrast aquarium individuals are largely fed whole and partial fish within the water column, a much ‘softer’ diet. Comparison of this study to others analysing vertebrate diet, repeatedly display significant differences in certain parameters when comparing groups with harder/softer diets. Purnell and Darras23 found that Sdq, Sdr, Vmc, Vvv, Sk and Sa discriminated best between the specialist durophagous and more opportunist durophagous fish in their study (based on ANOVA and PCA), with these parameters also differing between populations of the opportunist durophage Archosargus probatocephalus with different proportions of hard prey in their diets. Of these parameters, Sk, Sa, Vmc, and Vvv produce pairwise differences between C. taurus samples (between 1 and 4). These parameters capture aspects of surface heights and the volumes of material within the core and voids in valleys, respectively (Supplementary Table S1 online). All increase in value as the proportion of elasmobranchs in the diet increases, the same as the pattern of increase with durophagy seen in Archosargus probatocephalus and Anarhichas lupus23. Vmc, Vvv, and Sk were also found to increase with the amount of hard-shelled prey in the diet of cichlids24. This means that ‘harder’ diets produce tooth surface textures with greater core depth and an increase in the volumes of core material and valleys. In short ‘harder’ diets produce rougher tooth surfaces.
This conclusion is also supported by a recent DMTA study on reptiles29, which exhibit significant overlap with sharks in the parameter trends correlating with ‘harder’ diets. Of the parameters correlating with increasing PC 1 values in sharks, parameters correlated with increasing dietary ‘hardness’ in reptiles include those capturing aspects of texture height (Sa, Sq, S5z), the number of peaks (Spk), and the depth, void volume and material volume of the core (Sk, Vvc, Vmc). Once again ‘harder’ diets produce rougher tooth surfaces.
Other studies, although focussed on terrestrial rather than aquatic vertebrates, have found similar patterns. Vmc, Vvc, Vvv, and Sa increase with more abrasive diets in grazing ungulate mammals34; Vmc, Vvv and Sk increase with increasingly ‘hard’ prey in insectivorous bats21. Unlike other studies, the latter found Sa (the average surface height) to decrease with harder diets26. A recent study of bats and moles35 found that, like sharks, increasing the ‘hardness’ of the prey creates rougher tooth surfaces that can be defined by increases in Sa, Vmc, VVc values (amongst others) and a decrease in Sds values (amongst others).
Source: Ecology - nature.com