in

Recovery of freshwater microbial communities after extreme rain events is mediated by cyclic succession

  • 1.

    Battin, T. J. et al. Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 1, 95–100 (2008).

    CAS  Article  Google Scholar 

  • 2.

    Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

    CAS  Article  Google Scholar 

  • 3.

    Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Downing, J. A. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29, 9–24 (2010).

    Google Scholar 

  • 5.

    Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50–50 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Fairchild, G. W. & Velinsky, D. J. Effects of small ponds on stream water chemistry. Lake Reserv. Manag. 22, 321–330 (2006).

    CAS  Article  Google Scholar 

  • 7.

    Yin, C. & Shan, B. Multipond systems: a sustainable way to control diffuse phosphorus pollution. AMBIO 30, 369–375 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Stanley, E. H. & Doyle, M. W. A geomorphic perspective on nutrient retention following dam removal: geomorphic models provide a means of predicting ecosystem responses to dam removal. BioScience 52, 693–701 (2002).

    Article  Google Scholar 

  • 9.

    Downing, J. A., Cherrier, C. T. & Fulweiler, R. W. Low ratios of silica to dissolved nitrogen supplied to rivers arise from agriculture not reservoirs. Ecol. Lett. 19, 1414–1418 (2016).

    PubMed  Article  Google Scholar 

  • 10.

    Dickman, M. Some effects of lake renewal on phytoplankton productivity and species composition. Limnol. Oceanogr. 14, 660–666 (1969).

    Article  Google Scholar 

  • 11.

    Madsen, H., Lawrence, D., Lang, M., Martinkova, M. & Kjeldsen, T. R. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J. Hydrol. 519, 3634–3650 (2014).

    Article  Google Scholar 

  • 12.

    Clark, J. M. et al. The importance of the relationship between scale and process in understanding long-term DOC dynamics. Sci. Total Environ. 408, 2768–2775 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Vystavna, Y., Hejzlar, J. & Kopáček, J. Long-term trends of phosphorus concentrations in an artificial lake: socio-economic and climate drivers. PLoS ONE 12, e0186917 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 14.

    Reynolds, C. S. Phytoplankton assemblages and their periodicity in stratifying lake systems. Ecography 3, 141–159 (1980).

    Article  Google Scholar 

  • 15.

    Sommer, U., Gliwicz, Z. M., Lampert, W. & Duncan, A. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106, 433–471 (1986).

    Google Scholar 

  • 16.

    Kundzewicz, Z. W. et al. Differences in flood hazard projections in Europe—their causes and consequences for decision making. Hydrol. Sci. J. 62, 1–14 (2017).

    Google Scholar 

  • 17.

    Arnell, N. W. & Gosling, S. N. The impacts of climate change on river flood risk at the global scale. Clim. Change 134, 387–401 (2016).

    Article  Google Scholar 

  • 18.

    Hirabayashi, Y. et al. Global flood risk under climate change. Nat. Clim. Change 3, 816–821 (2013).

    Article  Google Scholar 

  • 19.

    Lynch, L. M. et al. River channel connectivity shifts metabolite composition and dissolved organic matter chemistry. Nat. Commun. 10, 459 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    Article  Google Scholar 

  • 21.

    Shade, A. et al. Lake microbial communities are resilient after a whole-ecosystem disturbance. ISME J. 6, 2153–2167 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Evol. Syst. 4, 1–23 (1973).

    Article  Google Scholar 

  • 23.

    Holling, C. S. & Gunderson, L. H. in Panarchy Synopsis: Understanding Transformations in Human and Natural Systems (eds Gunderson, L. H. & Holling, C. S.) 25–62 (Island Press, 2002).

  • 24.

    Gabaldón, C. et al. Repeated flood disturbance enhances rotifer dominance and diversity in a zooplankton community of a small dammed mountain pond. J. Limnol. 76, 13 (2016).

    Google Scholar 

  • 25.

    Porcal, P. & Kopáček, J. Photochemical degradation of dissolved organic matter reduces the availability of phosphorus for aquatic primary producers. Chemosphere 193, 1018–1026 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Macarthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).

    Article  Google Scholar 

  • 27.

    Newton, R. J., Kent, A. D., Triplett, E. W. & McMahon, K. D. Microbial community dynamics in a humic lake: differential persistence of common freshwater phylotypes. Environ. Microbiol. 8, 956–970 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Neuenschwander, S. M., Ghai, R., Pernthaler, J. & Salcher, M. M. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME J. 12, 185–198 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Cabello-Yeves, P. J. et al. Reconstruction of diverse verrucomicrobial genomes from metagenome datasets of freshwater reservoirs. Front. Microbiol. 8, 2131 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Reznick, D., Bryant, M. J. & Bashey, F. r- and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83, 1509–1520 (2002).

    Article  Google Scholar 

  • 31.

    Mac Arthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  • 32.

    Šimek, K. et al. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol. Oceanogr. 59, 1477–1492 (2014).

    Article  CAS  Google Scholar 

  • 33.

    Logue, J. B., Mouquet, N., Peter, H. & Hillebrand, H. Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol. Evol. 26, 482–491 (2011).

    PubMed  Article  Google Scholar 

  • 34.

    Shabarova, T. et al. Bacterial community structure and dissolved organic matter in repeatedly flooded subsurface karst water pools. FEMS Microbiol. Ecol. 89, 111–126 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Shabarova, T., Widmer, F. & Pernthaler, J. Mass effects meet species sorting: transformations of microbial assemblages in epiphreatic subsurface karst water pools. Environ. Microbiol. 15, 2476–2488 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Jones, S. E. et al. Typhoons initiate predictable change in aquatic bacterial communities. Limnol. Oceanogr. 53, 1319–1326 (2008).

    Article  Google Scholar 

  • 37.

    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Hahn, M. W. Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl. Environ. Microb. 69, 5248–5254 (2003).

    CAS  Article  Google Scholar 

  • 39.

    Salcher, M. M., Neuenschwander, S. M., Posch, T. & Pernthaler, J. The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign. ISME J. 9, 2442–2453 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Vuono, D. C. et al. Disturbance and temporal partitioning of the activated sludge metacommunity. ISME J. 9, 425–435 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 41.

    Shabarova, T. et al. Distribution and ecological preferences of the freshwater lineage LimA (genus Limnohabitans) revealed by a new double hybridization approach. Environ. Microbiol. 19, 1296–1309 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Hahn, M. W., Lang, E., Tarao, M. & Brandt, U. Polynucleobacter rarus sp. nov., a free-living planktonic bacterium isolated from an acidic lake. Int. J. Syst. Evol. Microbiol. 61, 781–787 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Hahn, M. W. et al. The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living Polynucleobacter population. PLoS ONE 7, e32772 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 3, 537–546 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Sommer, U. et al. Beyond the plankton ecology group (Peg) model: mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 43, 429–448 (2012).

    Article  Google Scholar 

  • 46.

    Šimek, K. et al. Bacterial prey food characteristics modulate community growth response of freshwater bacterivorous flagellates. Limnol. Oceanogr. 63, 484–502 (2018).

    Article  Google Scholar 

  • 47.

    Posch, T. et al. Network of interactions between ciliates and phytoplankton during spring. Front. Microbiol. 6, 1289 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Geraldes, A. M. & Boavida, M.-J. Zooplankton assemblages in two reservoirs: one subjected to accentuated water level fluctuations, the other with more stable water levels. Aquat. Ecol. 41, 273–284 (2007).

    CAS  Article  Google Scholar 

  • 49.

    Nilssen, J. P. & Wærvågen, S. B. Superficial ecosystem similarities vs autecological stripping: the ‘twin species’ Mesocyclops leuckarti (Claus) and Thermocyclops oithonoides (Sars)—seasonal habitat utilisation and life history traits. J. Limnol. 59, 79–102 (2000).

    Article  Google Scholar 

  • 50.

    Cole, T. M. & Wells, S. A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 4.1 (Department of Civil and Environmental Engineering, 2018).

  • 51.

    Brussaard, C. P. D. Optimization of procedures for counting viruses by flow cytometry. Appl. Environ. Microb. 70, 1506–1513 (2004).

    CAS  Article  Google Scholar 

  • 52.

    Porter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948 (1980).

    Article  Google Scholar 

  • 53.

    Sherr, E. B. & Sherr, B. F. in Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P. F. et al.) 207–212 (Lewis Publishers, 1993).

  • 54.

    Sherr, E. B. & Sherr, B. F. in Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P. F. et al.) 695–701 (Lewis Publishers, 1993).

  • 55.

    Kasalický, V., Jezbera, J., Hahn, M. W. & Šimek, K. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS ONE 8, e58209 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 56.

    Šimek, K. et al. Microbial food webs in hypertrophic fishponds: omnivorous ciliate taxa are major protistan bacterivores. Limnol. Oceanogr. 64, 2295–2309 (2019).

    Article  CAS  Google Scholar 

  • 57.

    Lund, J. W. G., Kipling, C. & Le Cren, E. D. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11, 143–170 (1958).

    Article  Google Scholar 

  • 58.

    Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).

    Article  Google Scholar 

  • 59.

    Straškraba, M. & Hrbáček, J. Net-plankton cycle in slapy reservoir during 1958–1960. Hydrobiol. Stud. 1, 113–153 (1966).

    Google Scholar 

  • 60.

    Nercessian, O., Noyes, E., Kalyuzhnaya, M. G., Lidstrom, M. E. & Chistoserdova, L. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microb. 71, 6885–6899 (2005).

    CAS  Article  Google Scholar 

  • 61.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  • 63.

    Yilmaz, P. et al. The SILVA and ‘all-species living tree project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 65.

    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Schöfl, G. reutils: talk to the NCBI EUtils. R version 0.2.3 https://CRAN.R-project.org/package=reutils (2016).

  • 68.

    Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Fuchs, B. M., Glöckner, F. O., Wulf, J. & Amann, R. Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl. Environ. Microb. 66, 3603–3607 (2000).

    CAS  Article  Google Scholar 

  • 71.

    Buckley, D. H. & Schmidt, T. M. Environmental factors influencing the distribution of rRNA from verrucomicrobia in soil. FEMS Microbiol. Ecol. 35, 105–112 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 72.

    Yilmaz, L. S., Parnerkar, S. & Noguera, D. R. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl. Environ. Microb. 77, 1118–1122 (2011).

    CAS  Article  Google Scholar 

  • 73.

    Sekar, R. et al. An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl. Environ. Microb. 69, 2928–2935 (2003).

    CAS  Article  Google Scholar 

  • 74.

    Lorenzen, C. J. Determination of chlorophyll and pheo-pigments: spectrophotometric equations 1. Limnol. Oceanogr. 12, 343–346 (1967).

    CAS  Article  Google Scholar 

  • 75.

    Golterman, H. L. Methods for Chemical Analysis of Fresh Waters (F. A. Davis Company, 1969).

  • 76.

    Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).

    CAS  Article  Google Scholar 

  • 77.

    Kopáček, J. & Hejzlar, J. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int. J. Environ. Anal. Chem. 53, 173–183 (1993).

    Article  Google Scholar 

  • 78.

    Oksanen, J. et al. vegan: community ecology package. R version 2.5–6 (2019); https://CRAN.R-project.org/package=vegan


  • Source: Ecology - nature.com

    Mercury methylation by metabolically versatile and cosmopolitan marine bacteria

    3 Questions: Ernest Moniz on the future of climate and energy under the Biden-Harris administration