in

An Indo-Pacific coral spawning database

  • 1.

    Harrison, P. L. et al. Mass spawning in tropical reef corals. Science 223, 1186–1189 (1984).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Willis, B. L., Babcock, R. C., Harrison, P. L. & Oliver, J. K. Patterns in the mass spawning of corals on the Great Barrier Reef from 1981 to 1984. Proc 5th Int Coral Reef Symp 4, 343–348 (1985).

    Google Scholar 

  • 3.

    Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol., Evol. Syst. 40, 551–571 (2009).

    Article  Google Scholar 

  • 4.

    Baird, A. H. et al. Coral reproduction on the world’s southernmost reef at Lord Howe Island, Australia. Aquat. Biol. 23, 275–284 (2015).

    Article  Google Scholar 

  • 5.

    Harrison, P. L. in Coral Reefs: An Ecosystem in Transition (eds Z. Dubinsky & N. Stambler) 59-85 (Springer Science, 2011).

  • 6.

    Keith, S. A. et al. Coral mass spawning predicted by rapid seasonal rise in ocean temperature. Proc. R. Soc. Lond., Ser. B: Biol. Sci. 283, 20160011 (2016).

    Google Scholar 

  • 7.

    Wolstenholme, J. K. Temporal reproductive isolation and gametic compatibility are evolutionary mechanisms in the Acropora humilis species group (Cnidaria; Scleractinia). Mar. Biol. 144, 567–582 (2004).

    Article  Google Scholar 

  • 8.

    Morita, M. et al. Reproductive strategies in the intercrossing corals Acropora donei and A. tenuis to prevent hybridization. Coral Reefs 38, 1211–1223 (2019).

    ADS  Article  Google Scholar 

  • 9.

    Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).

    ADS  Article  Google Scholar 

  • 10.

    Bouwmeester, J. et al. Multi-species spawning synchrony within scleractinian coral assemblages in the Red Sea. Coral Reefs 34, 65–77 (2015).

    ADS  Article  Google Scholar 

  • 11.

    Baird, A. H., Blakeway, D. R., Hurley, T. J. & Stoddart, J. A. Seasonality of coral reproduction in the Dampier Archipelago, northern Western Australia. Mar. Biol. 158, 275–285 (2011).

    Article  Google Scholar 

  • 12.

    Styan, C. A. & Rosser, N. L. Is monitoring for mass spawning events in coral assemblages in north Western Australia likely to detect spawning? Mar. Pollut. Bull. 64, 2523–2527 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Visser, M. E. & Both, C. Shifts in phenology due to global climate change: the need for a yardstick. Proc. R. Soc. Lond., Ser. B: Biol. Sci. 272, 2561–2569 (2005).

    Google Scholar 

  • 14.

    Hock, K., Doropoulos, C., Gorton, R., Condie, S. A. & Mumby, P. J. Split spawning increases robustness of coral larval supply and inter-reef connectivity. Nat. Comm. 10 (2019).

  • 15.

    Sakai, Y. et al. Environmental factors explain spawning day deviation from full moon in the scleractinian coral Acropora. Biol. Lett. 16, 20190760 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Madin, J. S. et al. The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Scientific Data 3, 160017 (2016).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Veron, J., Stafford-Smith, M., DeVantier, L. & Turak, E. Overview of distribution patterns of zooxanthellate Scleractinia. Front. Mar. Sci. 1 (2015).

  • 18.

    Veron, J. E. N. Corals of the world. (AIMS, 2000).

  • 19.

    Hoeksema, B. W. & Cairns, S. D. World List of Scleractinia. Accessed through: World Register of Marine Species at: http://www.marinespecies.org/aphia.php?p=taxdetails&id=1363 (2020).

  • 20.

    Fukami, H. et al. Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (order Scleractinia, class Anthozoa, phylum Cnidaria). PLoS ONE 3 (2008).

  • 21.

    Arrigoni, R., Terraneo, T. I., Galli, P. & Benzoni, F. Lobophylliidae (Cnidaria, Scleractinia) reshuffled: Pervasive non-monophyly at genus level. Mol. Phylogen. Evol. 73, 60–64 (2014).

    Article  Google Scholar 

  • 22.

    Huang, D. et al. Towards a phylogenetic classification of reef corals: the Indo-Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae). Zool. Scr. 43, 531–548 (2014).

    Article  Google Scholar 

  • 23.

    Babcock, R. C. et al. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90, 379–394 (1986).

    Article  Google Scholar 

  • 24.

    Veron, J. E. N. Corals of Australia and the Indo-Pacific. (Angus & Robertson, 1986).

  • 25.

    Bengtson, P. Open Nomenclature. Palaeontology 31, 223–227 (1988).

    Google Scholar 

  • 26.

    Sigovini, M., Keppel, E. & Tagliapietra, D. Open Nomenclature in the biodiversity era. Methods Ecol. Evol. 7, 1217–1225 (2016).

    Article  Google Scholar 

  • 27.

    Baird, A. H. et al. Coral Spawning Database. Newcastle University, https://doi.org/10.25405/data.ncl.13082333 (2020).

  • 28.

    Babcock, R., Mundy, C., Keesing, J. & Oliver, J. Predictable and unpredictable spawning events: in situ behavioural data from free-spawning coral reef invertebrates. Invertebr. Reprod. Dev. 22, 213–227 (1992).

    Article  Google Scholar 

  • 29.

    Babcock, R. C. Reproduction and distribution of two species of Goniastrea (Scleractinia) from the Great Barrier Reef Province. Coral Reefs 2, 187–195 (1984).

    ADS  Google Scholar 

  • 30.

    Babcock, R. C., Willis, B. L. & Simpson, C. J. Mass spawning of corals on a high-latitude coral-reef. Coral Reefs 13, 161–169 (1994).

    ADS  Article  Google Scholar 

  • 31.

    Boch, C. A., Ananthasubramaniam, B., Sweeney, A. M., Francis, J. D. III & Morse, D. E. Effects of Light Dynamics on Coral Spawning Synchrony. Biol. Bull. 220, 161–173 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Boch, C. A. & Morse, A. N. C. Testing the effectiveness of direct propagation techniques for coral restoration of Acropora spp. Ecol. Eng. 40, 11–17 (2012).

    Article  Google Scholar 

  • 33.

    Bouwmeester, J., Gatins, R., Giles, E. C., Sinclair-Taylor, T. H. & Berumen, M. L. Spawning of coral reef invertebrates and a second spawning season for scleractinian corals in the central Red Sea. Invertebr. Biol. 135, 273–284 (2016).

    Article  Google Scholar 

  • 34.

    Bronstein, O. & Loya, Y. Daytime spawning of Porites rus on the coral reefs of Chumbe Island in Zanzibar, Western Indian Ocean (WIO). Coral Reefs 30, 441–441 (2011).

    ADS  Article  Google Scholar 

  • 35.

    Carroll, A., Harrison, P. L. & Adjeroud, M. Sexual reproduction of Acropora reef corals at Moorea, French Polynesia. Coral Reefs 25, 93–97 (2006).

    ADS  Article  Google Scholar 

  • 36.

    Chelliah, A. et al. First record of multi-species synchronous coral spawning from Malaysia. Peerj 3, e777 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Chua, C. M., Leggat, W., Moya, A. & Baird, A. H. Temperature affects the early life history stages of corals more than near future ocean acidification. Mar. Ecol. Prog. Ser. 475, 85–92 (2013).

    ADS  Article  Google Scholar 

  • 38.

    Chua, C. M., Leggat, W., Moya, A. & Baird, A. H. Near-future reductions in pH will have no consistent ecological effects on the early life-history stages of reef corals. Mar. Ecol. Prog. Ser. 486, 143–151 (2013).

    ADS  Article  Google Scholar 

  • 39.

    Dai, C. F., Soong, K. & Fan, T. Y. Sexual reproduction of corals in northern and southern Taiwan. Proceeding of the 7th International Coral Reef Symposium 1, 448–455 (1992).

    Google Scholar 

  • 40.

    Doropoulos, C. & Diaz-Pulido, G. High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algae. Mar. Ecol. Prog. Ser. 475, 93–99 (2013).

    ADS  Article  Google Scholar 

  • 41.

    Doropoulos, C. et al. Testing industrial-scale coral restoration techniques: Harvesting and culturing wild coral-spawn slicks. Front. Mar. Sci. 6 (2019).

  • 42.

    Doropoulos, C., Ward, S., Diaz-Pulido, G., Hoegh-Guldberg, O. & Mumby, P. J. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecol. Lett., no-no, (2012).

  • 43.

    Doropoulos, C., Ward, S., Marshell, A., Diaz-Pulido, G. & Mumby, P. J. Interactions among chronic and acute impacts on coral recruits: the importance of size-escape thresholds. Ecology 93, 2131–2138 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Eyal-Shaham, L. et al. Repetitive sex change in the stony coral Herpolitha limax across a wide geographic range. Scientific Reports 9, 2936 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 45.

    Eyre, B. D., Glud, R. N. & Patten, N. Mass coral spawning: A natural large-scale nutrient addition experiment. Limnol. Oceanogr. 53, 997–1013 (2008).

    ADS  CAS  Article  Google Scholar 

  • 46.

    Fadlallah, Y. H. Synchronous spawning of Acropora clathrata coral colonies from the western Arabian Gulf (Saudi Arabia). Bull. Mar. Sci. 59, 209–216 (1996).

    Google Scholar 

  • 47.

    Field, S. in Reproduction in Reef Corals (eds E. F. Cox, D. A. Krupp, & P. L. Jokiel) 111–119 (Hawaii Institute of Marine Biology, 1998).

  • 48.

    Fiebig, S. M. & Vuki, V. C. Mass spawning of scleractinian corals on Fijian reefs and in particular, Suva Reef. The South Pacific Journal of Natural Sciences 15 (1997).

  • 49.

    Fiene-Severns, P. in Reproduction in Reef Corals (eds E. F. Cox, D. A. Krupp, & P. L. Jokiel) 22–24 (Hawaii Institute of Marine Biology, 1998).

  • 50.

    Fujiwara, S., Kezuka, D., Ishimizu, H., Tabata, S. & Nojima, S. Condition for mass spawning of scleractinian coral Acropora in the Sekisei Lagoon, Ryukyu Islands. Bull. Jap. Soc. Fish. Oceanogr. 79, 130–140 (2015).

    Google Scholar 

  • 51.

    Fukami, H., Omori, M., Shimoike, K., Hayashibara, T. & Hatta, M. Ecological and genetic aspects of reproductive isolation by different spawning times in Acropora corals. Mar. Biol. 142, 679–684 (2003).

    Article  Google Scholar 

  • 52.

    Gilmour, J. Experimental investigation into the effects of suspended sediment on fertilisation, larval survival and settlement in a scleractinian coral. Mar. Biol. 135, 451–462 (1999).

    Article  Google Scholar 

  • 53.

    Gilmour, J. P., Smith, L. D. & Brinkman, R. M. Biannual spawning, rapid larval development and evidence of self-seeding for scleractinian corals at an isolated system of reefs. Mar. Biol. 156, 1297–1309 (2009).

    Article  Google Scholar 

  • 54.

    Glynn, P. W. et al. Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galapagos Islands (Ecuador). 3. Agariciidae (Pavona gigantea and Gardineroseris planulata). Mar. Biol. 125, 579–601 (1996).

    Google Scholar 

  • 55.

    Glynn, P. W. et al. Reef coral reproduction in the eastern Pacific: Costa Rica, Panamá, and the Galápagos Islands (Ecuador). VI. Agariciidae, Pavona clavus. Mar. Biol. 158, 1601–1617 (2011).

    Article  Google Scholar 

  • 56.

    Glynn, P. W. et al. Reproductive ecology of the azooxanthellate coral Tubastraea coccinea in the equatorial eastern pacific: Part V. Dendrophylliidae. Mar. Biol. 153, 529–544 (2008).

    Article  Google Scholar 

  • 57.

    Glynn, P. W., Colley, S. B., Ting, J. H., Mate, J. L. & Guzman, H. M. Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galapagos Islands (Ecuador). 4. Agariciidae, recruitment and recovery of Pavona varians and Pavona sp. A. Mar. Biol. 136, 785–805 (2000).

    Article  Google Scholar 

  • 58.

    Gomez, E. J. et al. Gametogenesis and reproductive pattern of the reef-building coral Acropora millepora in northwestern Philippines. Invertebr. Reprod. Dev. 62, 202–208 (2018).

    CAS  Article  Google Scholar 

  • 59.

    Graham, E. M., Baird, A. H. & Connolly, S. R. Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27, 529–539 (2008).

    ADS  Article  Google Scholar 

  • 60.

    Gress, E. & Paige, N. & Bollard, S. Observations of Acropora spawning in the Mozambique Channel. West. Indian Ocean J. Mar. Sci. 13, 107 (2014).

    Google Scholar 

  • 61.

    Guest, J. R., Baird, A. H., Goh, B. P. L. & Chou, L. M. Reproductive seasonality in an equatorial assemblage of scleractinian corals. Coral Reefs 24, 112–116 (2005).

    Article  Google Scholar 

  • 62.

    Hayashibara, T. & Shimoike, K. Cryptic species of Acropora digitifera. Coral Reefs 21, 224–225 (2002).

    Article  Google Scholar 

  • 63.

    Hayashibara, T. et al. Patterns of coral spawning at Akajima Island, Okinawa, Japan. Mar. Ecol. Prog. Ser. 101, 253–262 (1993).

    ADS  Article  Google Scholar 

  • 64.

    Heyward, A., Yamazato, K., Yeemin, T. & Minei, M. Sexual reproduction of coral in Okinawa. Galaxea 6, 331–343 (1987).

    Google Scholar 

  • 65.

    Heyward, A. J. in Coral Reef Population Biology (eds P. L. Jokiel, R. H. Richmond, & R. A. Rogers) 170–178 (Sea Grant Coop, 1986).

  • 66.

    Heyward, A. J. & Babcock, R. C. Self- and cross-fertilization in scleractinian corals. Mar. Biol. 90, 191–195 (1986).

    Article  Google Scholar 

  • 67.

    Heyward, A. J. & Negri, A. P. Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279 (1999).

    Article  Google Scholar 

  • 68.

    Hirose, M. & Hidaka, M. Early development of zooxanthella-containing eggs of the corals Porites cylindrica and Montipora digitata: The endodermal localization of zooxanthellae. Zool. Sci. 23, 873–881 (2006).

    Article  Google Scholar 

  • 69.

    Hirose, M., Kinzie, R. A. & Hidaka, M. Timing and process of entry of zooxanthellae into oocytes of hermatypic corals. Coral Reefs 20, 273–280 (2001).

    Article  Google Scholar 

  • 70.

    Hodgson, G. Potential gamete wastage in synchronously spawning corals due to hybrid inviability. Proceedings of the 6th International Coral Reef Symposium 2, 707–714 (1988).

    Google Scholar 

  • 71.

    Howells, E. J., Abrego, D., Vaughan, G. O. & Burt, J. A. Coral spawning in the Gulf of Oman and relationship to latitudinal variation in spawning season in the northwest Indian Ocean. Scientific Reports 4, 7484 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Howells, E. J., Berkelmans, R., van Oppen, M. J. H., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 94, 1078–1088 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Hunter, C. L. Environmental cues controlling spawning in two Hawaiian corals, Montipora verrucosa and M. dilitata. Proceedings of the 6th International Coral Reef Symposium 2, 727–732 (1988).

    Google Scholar 

  • 74.

    Itano, D. & Buckley, T. Observations of the mass spawning of corals and palolo (Eunice viridis) in American Samoa. (Department of Marine and Wildlife Resources, American Samoa, American Samoa, 1988).

  • 75.

    Jamodiong, E. A. et al. Coral spawning and spawn-slick observation in the Philippines. Mar. Biodivers. 48, 2187–2192 (2018).

    Article  Google Scholar 

  • 76.

    Kenyon, J. C. Hybridization and polyploidy in the coral genus. Acropora. Pac. Sci. 48, 203–204 (1994).

    Google Scholar 

  • 77.

    Kenyon, J. C. Latitudinal differences between Palau and Yap in coral reproductive synchrony. Pac. Sci. 49, 156–164 (1995).

    Google Scholar 

  • 78.

    Kinzie, R. A. Spawning in the reef corals Pocillopora verrucosa and P. eydouxi at Sesoko Island, Okinawa. Galaxea 11, 93–105 (1993).

    Google Scholar 

  • 79.

    Kojis, B. L. & Quinn, N. J. Aspects of sexual reproduction and larval development in the shallow water hermatypic coral, Goniastrea australensis (Edwards and Haime, 1857). Bull. Mar. Sci. 31, 558–573 (1981).

    Google Scholar 

  • 80.

    Kojis, B. L. & Quinn, N. J. Reproductive ecology of two faviid corals (Coelenterata: Scleractinia). Mar. Ecol. Prog. Ser. 8, 251–255 (1982).

    ADS  Article  Google Scholar 

  • 81.

    Kojis, B. L. & Quinn, N. J. Reproductive strategies in four species of Porites (Scleractinia). Proceedings of the 4th International Coral Reef Symposium 2, 145–151 (1982).

    Google Scholar 

  • 82.

    Kongjandtre, N., Ridgway, T., Ward, S. & Hoegh-Guldberg, O. Broadcast spawning patterns of Favia species on the inshore reefs of Thailand. Coral Reefs 29, 227–234 (2010).

    ADS  Article  Google Scholar 

  • 83.

    Krupp, D. A. Sexual reproduction and early development of the solitary coral Fungia scutaria (Anthozoa: Scleractinia). Coral Reefs 2, 159–164 (1983).

    ADS  Article  Google Scholar 

  • 84.

    Ligson, C. A., Tabalanza, T. D., Villanueva, R. D. & Cabaitan, P. C. Feasibility of early outplanting of sexually propagated Acropora verweyi for coral reef restoration demonstrated in the Philippines. Restor. Ecol. 28, 244–251 (2020).

    Article  Google Scholar 

  • 85.

    Lin, C. H. & Nozawa, Y. Variability of spawning time (lunar day) in Acropora versus merulinid corals: a 7-yr record of in situ coral spawning in Taiwan. Coral Reefs 36, 1269–1278 (2017).

    ADS  Article  Google Scholar 

  • 86.

    Loya, Y., Heyward, A. & Sakai, K. Reproductive patterns of fungiid corals in Okinawa, Japan. Galaxea 11, 119–129 (2009).

    Article  Google Scholar 

  • 87.

    Loya, Y. & Sakai, K. Bidirectional sex change in mushroom stony corals. Proceedings of the Royal Society B: Biological Sciences 275, 2335–2343 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 88.

    Maboloc, E. A., Jamodiong, E. A. & Villanueva, R. D. Reproductive biology and larval development of the scleractinian corals Favites colemani and F. abdita (Faviidae) in northwestern Philippines. Invertebr. Reprod. Dev. 60, 1–11 (2016).

    Article  Google Scholar 

  • 89.

    Mangubhai, S. Reproductive ecology of the scleractinian corals Echinopora gemmacea and Leptoria phrygia (Faviidae) on equatorial reefs in Kenya. Invertebr. Reprod. Dev. 53, 67–79 (2009).

    Article  Google Scholar 

  • 90.

    Mangubhai, S., Harris, A. & Graham, N. A. J. Synchronous daytime spawning of the solitary coral Fungia danai (Fungiidae) in the Chagos Archipelago, central Indian Ocean. Coral Reefs 26, 15–15 (2007).

    Article  Google Scholar 

  • 91.

    Markey, K. L., Baird, A. H., Humphrey, C. & Negri, A. Insecticides and a fungicide affect multiple coral life stages. Mar. Ecol. Prog. Ser. 330, 127–137 (2007).

    ADS  CAS  Article  Google Scholar 

  • 92.

    Mate, J. F. in Reproduction in Reef Corals (eds E. F. Cox, D. A. Krupp, & P. L. Jokiel) 25-37 (Hawaii Institute of Marine Biology, 1998).

  • 93.

    Mate, J. F., Wilson, J., Field, S. & Neves, E. G. in Reproduction in Reef Corals (eds E. F. Cox, D. A. Krupp, & P. L. Jokiel) 25–37 (Hawaii Institute of Marine Biology, 1998).

  • 94.

    Mezaki, T. et al. Spawning patterns of high latitude scleractinian corals from 2002 to 2006 at Nishidomari, Otsuki, Kochi, Japan. Kuroshio Biosphere 3, 33–47 (2007).

    Google Scholar 

  • 95.

    Mohamed, A. R. et al. The transcriptomic response of the coral Acropora digitifera to a competent Symbiodinium strain: the symbiosome as an arrested early phagosome. Mol. Ecol. 25, 3127–3141 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 96.

    Mundy, C. N. & Green, A. Spawning observations of corals and other invertebrates in American Samoa. (Department of Marine and Wildlife Resources, American Samoa Governement, Samoa, 1999).

  • 97.

    Nitschke, M. R., Davy, S. K. & Ward, S. Horizontal transmission of Symbiodinium cells between adult and juvenile corals is aided by benthic sediment. Coral Reefs 35, 335–344 (2016).

    ADS  Article  Google Scholar 

  • 98.

    Nozawa, Y. & Harrison, P. L. Temporal settlement patterns of larvae of the broadcast spawning reef coral Favites chinensis and the broadcast spawning and brooding reef coral Goniastrea aspera from Okinawa, Japan. Coral Reefs 24, 274–282 (2005).

    Article  Google Scholar 

  • 99.

    Nozawa, Y., Tokeshi, M. & Nojima, S. Reproduction and recruitment of scleractinian corals in a high-latitude coral community, Amakusa, southwestern Japan. Mar. Biol. 149, 1047–1058 (2006).

    Article  Google Scholar 

  • 100.

    Okamoto, M., Nojima, S., Furushima, Y. & Phoel, W. C. A basic experiment of coral culture using sexual reproduction in the open sea. Fish. Sci. 71, 263–270 (2005).

    CAS  Article  Google Scholar 

  • 101.

    Omori, M., Fukami, H., Kobinata, H. & Hatta, M. Significant drop of fertilization of Acropora corals in 1999. An after-effect of heavy coral bleaching? Limnol. Oceanogr. 46, 704–706 (2001).

    ADS  Article  Google Scholar 

  • 102.

    Penland, L., Kloulechad, J., Idip, D. & van Woesik, R. Coral spawning in the western Pacific Ocean is related to solar insolation: evidence of multiple spawning events in Palau. Coral Reefs 23, 133–140 (2004).

    Article  Google Scholar 

  • 103.

    Plathong, S. et al. Daytime gamete release from the reef-building coral, Pavona sp., in the Gulf of Thailand. Coral Reefs 25, 72–72 (2006).

    ADS  Article  Google Scholar 

  • 104.

    Rapuano, H. et al. Reproductive strategies of the coral Turbinaria reniformis in the northern Gulf of Aqaba (Red Sea). Scientific Reports 7, 42670 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 105.

    Raj, K. D. & Edward, J. K. P. Observations on the reproduction of Acropora corals along the Tuticorin coast of the Gulf of Mannar, Southeastern India. Indian. J. Mar. Sci. 39, 219–226 (2010).

    Google Scholar 

  • 106.

    Richmond, R. H. Competency and dispersal potential of planula larvae of a spawning versus a brooding coral. Proceedings of the 6th International Coral Reef Symposium 2, 827–831 (1988).

    Google Scholar 

  • 107.

    Sakai, K. Gametogenesis, spawning, and planula brooding by the reef coral Goniastrea aspera (Scleractinia) in Okinawa, Japan. Mar. Ecol. Prog. Ser. 151, 67–72 (1997).

    ADS  Article  Google Scholar 

  • 108.

    Schmidt-Roach, S., Miller, K. J., Woolsey, E., Gerlach, G. & Baird, A. H. Broadcast spawning by Pocillopora species on the Great Barrier Reef. PLoS ONE 7, e50847 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 109.

    Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99, 421–437 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 110.

    Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 365, 1002–1007 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 111.

    Shlesinger, Y. & Loya, Y. Coral community reproductive patterns: Red Sea versus the Great Barrier Reef. Science 228, 1333–1335 (1985).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 112.

    Siboni, N. et al. Using bacterial extract along with differential gene expression in Acropora millepora larvae to decouple the processes of attachment and metamorphosis. PLoS ONE 7, e37774–e37774 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 113.

    Simpson, C. J. Mass spawning of scleractinian corals in the Dampier Archipelago and the implications for management of coral reefs in Western Australia. Report No. 244, (Dept. Conservation and Environment Western Australia Bulletin, Perth, 1985).

  • 114.

    Stanton, F. G. Spatio-temporal patterns of spawning in the coral, Montipora verrucosa in Hawaii. Proceeding of the 7th International Coral Reef Symposium 1, 489–493 (1992).

    Google Scholar 

  • 115.

    Tan, C. H. et al. Multispecific synchronous coral spawning on Pulau Bidong, Malaysia, South China Sea. Bull. Mar. Sci. 96, 193–194 (2020).

    Article  Google Scholar 

  • 116.

    Tomascik, T., Mah, A. J., Nontij, A. & Moosa, M. K. The Ecology of the Indonesian Seas. Vol. One (Periplus, 1997).

  • 117.

    Twan, W. H., Hwang, J. S. & Chang, C. F. Sex steroids in scleractinian coral, Euphyllia ancora: Implication in mass spawning. Biol. Reprod. 68, 2255–2260 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 118.

    Van Oppen, M. J. H., Willis, B. L., Van Rheede, T. & Miller, D. J. Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: evidence for natural hybridization and semi-permeable species boundaries in corals. Mol. Ecol. 11, 1363–1376 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  • 119.

    van Woesik, R. Coral communities at high latitude are not pseudopopulations: evidence of spawning at 32°N, Japan. Coral Reefs 14, 119–120 (1995).

    ADS  Article  Google Scholar 

  • 120.

    Wallace, C. C. Reproduction, recruitment and fragmentation in nine sympatric species of the coral genus. Acropora. Mar. Biol. 88, 217–233 (1985).

    Article  Google Scholar 

  • 121.

    Wei, N. W. V. et al. Reproductive Isolation among Acropora species (Scleractinia: Acroporidae) in a marginal coral assemblage. Zool. Stud. 51, 85–92 (2012).

    Google Scholar 

  • 122.

    Wild, C., Tollrian, R. & Huettel, M. Rapid recycling of coral mass-spawning products in permeable reef sediments. Mar. Ecol. Prog. Ser. 271, 159–166 (2004).

    ADS  Article  Google Scholar 

  • 123.

    Wilson, J. R. & Harrison, P. L. Sexual reproduction in high latitude coral communities at the Solitary Islands, eastern Australia. Proceedings of the 8th International Coral Reef Symposium, 533–540 (1997).

  • 124.

    Wilson, J. R. & Harrison, P. L. Spawning patterns of scleractinian corals at the Solitary Islands – a high latitude coral community in eastern Australia. Mar. Ecol. Prog. Ser. 260, 115–123 (2003).

    ADS  Article  Google Scholar 

  • 125.

    Wolstenholme, J., Nozawa, Y., Byrne, M. & Burke, W. Timing of mass spawning in corals: potential influence of the coincidence of lunar factors and associated changes in atmospheric pressure from northern and southern hemisphere case studies. Invertebr. Reprod. Dev. 62, 98–108 (2018).

    Article  Google Scholar 

  • 126.

    Woolsey, E. S., Byrne, M. & Baird, A. H. The effects of temperature on embryonic development and larval survival in two scleractinian corals. Mar. Ecol. Prog. Ser. 493, 179–184 (2013).

    ADS  Article  Google Scholar 

  • 127.

    Woolsey, E. S., Keith, S. A., Byrne, M., Schmidt-Roach, S. & Baird, A. H. Latitudinal variation in thermal tolerance thresholds of early life stages of corals. Coral Reefs 34, 471–478 (2015).

    ADS  Article  Google Scholar 

  • 128.

    Yeemin, T. Ecological studies of scleractinian coral communities above the northern limit of coral reef development in the western Pacific PhD thesis, Kyushu University, (1991).


  • Source: Ecology - nature.com

    MIT convenes influential industry leaders in the fight against climate change

    How will Covid-19 ultimately impact climate change?