in

Evidence that spillover from Marine Protected Areas benefits the spiny lobster (Panulirus interruptus) fishery in southern California

  • 1.

    Lubchenco, J., Palumbi, S. R., Gaines, S. D. & Andelman, S. Plugging a hole in the ocean: the emerging science of marine reserves. Ecol. Appl. 13, 3–7 (2003).

    Article  Google Scholar 

  • 2.

    Di Franco, A. et al. Five key attributes can increase marine protected areas performance for small-scale fisheries management. Sci. Rep. 6, 38135 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 3.

    Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018).

    Article  Google Scholar 

  • 4.

    Lester, S. E. & Halpern, B. S. Biological responses in marine no-take reserves versus partially protected areas. Mar. Ecol. Prog. Ser. 367, 49–56 (2008).

    ADS  Article  Google Scholar 

  • 5.

    Lester, S. E. et al. Biological effects within no-take marine reserves: A global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).

    ADS  Article  Google Scholar 

  • 6.

    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Gaines, S. D., White, C., Carr, M. H. & Palumbi, S. R. Designing marine reserve networks for both conservation and fisheries management. Proc. Nat. Acad. Sci. 107, 18286–18293 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Sala, E. et al. A general business model for marine reserves. PLoS ONE 8, e58799 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Lynham, J. et al. Impact of two of the world’s largest protected areas on longline fishery catch rates. Nat. Commun. 11, 1–9 (2020).

    MathSciNet  Article  CAS  Google Scholar 

  • 10.

    Cudney-Bueno, R., Lavín, M. F., Marinone, S. G., Raimondi, P. T. & Shaw, W. W. Rapid effects of marine reserves via larval dispersal. PLoS ONE 4, e4140 (2009).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 11.

    Pelc, R. A., Warner, R. R., Gaines, S. D. & Paris, C. B. Detecting larval export from marine reserves. Proc. Nat. Acad. Sci. 107, 18266–18271 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Gell, F. R. & Roberts, C. M. Benefits beyond boundaries: The fishery effects of marine reserves. Trends Ecol. Evol. 18, 448–455 (2003).

    Article  Google Scholar 

  • 13.

    Roberts, C. M., Hawkins, J. P. & Gell, F. R. The role of marine reserves in achieving sustainable fisheries. Philso. Trans. R. Soc. B Biol. Sci. 360, 123–132 (2005).

    Article  Google Scholar 

  • 14.

    Russ, G. R. & Alcala, A. C. Enhanced biodiversity beyond marine reserve boundaries: The cup spillith over. Ecol. Appl. 21, 241–250 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Di Lorenzo, M., Guidetti, P., Di Franco, A., Calò, A. & Claudet, J. Assessing spillover from marine protected areas and its drivers: A meta-analytical approach. Fish Fish. 21, 906–915 (2020).

    Article  Google Scholar 

  • 16.

    Dayton, P. K., Sala, E., Tegner, M. J. & Thrush, S. Marine reserves: parks, baselines, and fishery enhancement. Bull. Mar. Sci. 6, 617–634 (2000).

    Google Scholar 

  • 17.

    Roberts, C. M., Bohnsack, J. A., Gell, F. J., Hawkins, J. P. & Goodridge, R. Effects of marine reserves on adjacent fisheries. Science 294, 1920–1923 (2001).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Russ, G. R. et al. Marine reserve benefits local fisheries. Ecol. Appl. 14, 597–606 (2004).

    Article  Google Scholar 

  • 19.

    Goñi, R., Badalamenti, F. & Tupper, M. H. Fisheries—effects of marine protected areas on local fisheries: Evidence from empirical studies. In Marine Protected Areas: A Multidisciplinary Approach (Cambridge Univ (ed. Claudet, J.) 73–102 (Press, Cambridge, 2011).

    Google Scholar 

  • 20.

    Abesamis, R. A. & Russ, G. R. Density-dependent spillover from a marine reserve: Long-term evidence. Ecol. Appl. 15, 1798–1812 (2005).

    Article  Google Scholar 

  • 21.

    Kay, M. C. et al. Collaborative assessment of California spiny lobster population and fishery responses to a marine reserve network. Ecol. Appl. 22, 322–335 (2012).

    PubMed  Article  Google Scholar 

  • 22.

    Kellner, J. B., Tetreault, I., Gaines, S. D. & Nisbet, R. M. Fishing the line near marine reserves in single and multispecies fisheries. Ecol. Appl. 17, 1039–1054 (2007).

    PubMed  Article  Google Scholar 

  • 23.

    Edgar, G. J. et al. Bias in evaluating the effects of marine protected areas: The importance of baseline data for the Galapagos Marine Reserve. Envir. Conserv. 31, 212–218 (2004).

    Article  Google Scholar 

  • 24.

    Edgar, G. J., Barrett, N. S. & Morton, A. J. Biases associated with the use of underwater visual census techniques to quantify the density and size-structure of fish populations. J. Exp. Mar. Biol. Ecol. 308, 269–290 (2004).

    Article  Google Scholar 

  • 25.

    Sale, P. F. et al. Critical science gaps impede use of no-take fishery reserves. Trends Ecol. Evol. 20, 74–80 (2005).

    PubMed  Article  Google Scholar 

  • 26.

    Forcada, A. et al. Effects of habitat on spillover from marine protected areas to artisanal fisheries. Mar. Ecol. Prog. Ser. 379, 197–211 (2009).

    ADS  Article  Google Scholar 

  • 27.

    Hovel, K. A., Neilson, D. J., & Parnell, E. Baseline characterization of California spiny lobster (Panulirus interruptus) in South Coast marine protected areas: A report to California Sea Grant and the California Ocean Science Trust. 172 p. (COPC, 2015).

  • 28.

    Di Lorenzo, M., Claudet, J. & Guidetti, P. Spillover from marine protected areas to adjacent fisheries has an ecological and a fishery component. J. Nat. Conserv. 32, 62–66 (2016).

    Article  Google Scholar 

  • 29.

    Eggleston, D. B. & Parsons, D. M. Disturbance-induced ‘spill-in’ of Caribbean spiny lobster to marine reserves. Mar. Ecol. Prog. Ser. 371, 213–220 (2008).

    ADS  Article  Google Scholar 

  • 30.

    Goñi, R., Hilborn, R., Díaz, D., Mallol, S. & Adlerstein, S. Net contribution of spillover from a marine reserve to fishery catches. Mar. Ecol. Prog. Ser. 400, 233–243 (2010).

    ADS  Article  Google Scholar 

  • 31.

    Moland, E. et al. Lobster and cod benefit from small-scale northern marine protected areas: Inference from an empirical before-after control-impact study. Proc. Royal Soc. B 280, 20122679 (2013).

    Article  Google Scholar 

  • 32.

    Hilborn, R. K. et al. When can marine reserves improve fisheries management?. Ocean Coast. Manage. 47, 197–205 (2004).

    Article  Google Scholar 

  • 33.

    Saarman, E. T. & Carr, M. H. The California Marine Life Protection Act: A balance of top down and bottom up governance in MPA planning. Mar. Pol. 41, 41–49 (2013).

    Article  Google Scholar 

  • 34.

    Hamilton, S. L., Caselle, J. E., Malone, D. P. & Carr, M. H. Incorporating biogeography into evaluations of the Channel Islands marine reserve network. Proc. Natl. Acad. Sci. 107, 18272–18277 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 35.

    Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 14102 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Kay, M. C., Lenihan, H. S., Kotchen, M. J. & Miller, C. J. Effects of marine reserves on California spiny lobster are robust and modified by fine-scale habitat features and distance from reserve borders. Mar. Ecol. Prog. Ser. 451, 137–150 (2012).

    ADS  Article  Google Scholar 

  • 37.

    Koslow, J. A., Rogers-Bennett, L. & Neilson, D. J. A time series of California spiny lobster (Panulirus interruptus) phyllosoma from 1951 to 2008 links abundance to warm oceanographic conditions in southern California. CalCOFI Rep. 53, 132–139 (2012).

    Google Scholar 

  • 38.

    Guenther, C., López-Carr, D. & Lenihan, H. S. Differences in lobster fishing effort before and after MPA establishment. Appl. Geog. 59, 78–87 (2015).

    Article  Google Scholar 

  • 39.

    Peters, J. R., Reed, D. C. & Burkepile, D. E. Climate and fishing drive regime shifts in consumer-mediated nutrient cycling in kelp forests. Glob. Change Biol. 25, 3179–3192 (2019).

    ADS  Article  Google Scholar 

  • 40.

    Fitzgerald, S. P. Collaborative Research and Data-Limited Assessment of Small-Scale Trap Fisheries in the Santa Barbara Channel (Doctoral dissertation, UC Santa Barbara). 165 p. (2019).

  • 41.

    Iacchei, M., Robinson, P. & Miller, K. A. Direct impacts of commercial and recreational fishing on spiny lobster, Panulirus interruptus, populations at Santa Catalina Island, California, United States. N. Z. J. Mar. Fresh. Res. 39, 1201–1214 (2005).

    Article  Google Scholar 

  • 42.

    Lafferty, K. D. Fishing for lobsters indirectly increases epidemics in sea urchins. Ecol. Appl. 14, 1566–1573 (2004).

    Article  Google Scholar 

  • 43.

    Castorani, M. C., Reed, D. C. & Miller, R. J. Loss of foundation species: Disturbance frequency outweighs severity in structuring kelp forest communities. Ecology 99, 2442–2454 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Berriman, J. S. et al. Shifts in attack behavior of an important kelp forest predator within marine reserves. Mar. Ecol. Prog. Series 522, 193–201 (2015).

    ADS  Article  Google Scholar 

  • 45.

    Withy-Allen, K. R. & Hovel, K. A. California spiny lobster (Panulirus interruptus) movement behaviour and habitat use: Implications for the effectiveness of marine protected areas. Mar. Fresh. Res. 64, 359–371 (2013).

    Article  Google Scholar 

  • 46.

    Hart, D. R. When do marine reserves increase fishery yield?. Can. J. Fish. Aquat. Sci. 63, 1445–1449 (2006).

    Article  Google Scholar 

  • 47.

    Buxton, C. D., Hartmann, K. R., Kearney, R. & Gardner, C. When is spillover from marine reserves likely to benefit fisheries?. PLoS ONE 9, e107032 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Goñi, R. S. et al. Spillover from six western Mediterranean marine protected areas: Evidence from artisanal fisheries. Mar. Ecol. Prog. Ser. 366, 159–174 (2008).

    ADS  Article  Google Scholar 

  • 49.

    Nillos-Kleiven, P. J. et al. Fishing pressure impacts the abundance gradient of European lobsters across the borders of a newly established marine protected area. Proc. R. Soc. B 286, 20182455 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Halpern, B. S., Lester, S. E. & Kellner, J. B. Spillover from marine reserves and the replenishment of fished stocks. Environ. Conserv. 36, 268–276 (2009).

    Article  Google Scholar 

  • 51.

    Woodcock, P., O’Leary, B. C., Kaiser, M. J. & Pullin, A. S. Your evidence or mine? Systematic evaluation of reviews of marine protected area effectiveness. Fish Fish. 18, 668–681 (2017).

    Article  Google Scholar 

  • 52.

    Hilborn, R. Are MPAs effective?. ICES J. Mar. Sci. 75, 1160–1162 (2018).

    Article  Google Scholar 

  • 53.

    Ojeda-Martínez, C. et al. Review of the effects of protection in marine protected areas: Current knowledge and gaps. Anim. Biodiv. Conserv. 34, 191–203 (2011).

    Google Scholar 

  • 54.

    Kerwath, S. E., Winker, H., Götz, A. & Attwood, C. G. Marine protected area improves yield without disadvantaging fishers. Nat. Commun. 4, 1–6 (2013).

    Article  Google Scholar 

  • 55.

    Rassweiler, A., Costello, C., Hilborn, R. & Siegel, D. A. Integrating scientific guidance into marine spatial planning. Proc. R. Soc. B Biol. Sci. 281, 20132252 (2014).

    Article  Google Scholar 

  • 56.

    Selkoe, K. A. et al. Taking the chaos out of genetic patchiness: Seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol. Ecol. 19, 3708–3726 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Starr, R. M. et al. Variation in responses of fishes across multiple reserves within a network of marine protected areas in temperate waters. PLoS ONE 10, e118502 (2015).

    Article  CAS  Google Scholar 

  • 58.

    Jones, N., McGinlay, J. & Dimitrakopoulos, P. G. Improving social impact assessment of protected areas: A review of the literature and directions for future research. Envir. Impact Assess. Rev. 64, 1–7 (2017).

    Article  Google Scholar 

  • 59.

    CDFW. South Coast Fishery Spotlight: California Spiny Lobster. State of the California South Coast Supplemental Report: California Spiny Lobster. 7 pp. https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=141295&inline (2017)

  • 60.

    Reed, D. C. SBC LTER: reef: abundance, size and fishing effort for California Spiny Lobster (Panulirus interruptus), ongoing since 2012. Environ. Data Initiat. https://doi.org/10.6073/pasta/a593a675d644fdefb736750b291579a0 (2019).

    Article  Google Scholar 

  • 61.

    Reed, D. C., Nelson, J. C., Harrer, S. L. & Miller, R. J. Estimating biomass of benthic kelp forest invertebrates from body size and percent cover data. Mar. Biol. 163, 1–6 (2017).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT convenes influential industry leaders in the fight against climate change

    How will Covid-19 ultimately impact climate change?