in

Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies

  • 1.

    Dreyer, D. et al. The Earth’s magnetic field and visual landmarks steer migratory flight behavior in the nocturnal Australian Bogong Moth. Curr. Biol. 28, 2160–2166 (2018).

    CAS  Article  Google Scholar 

  • 2.

    Guerra, P. A., Gegear, R. J. & Reppert, S. M. A magnetic compass aids monarch butterfly migration. Nat. Commun. 5, 4164 (2014).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Mouritsen, H. Long-distance navigation and magnetoreception in migratory animals. Nature 558, 50–59 (2018).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Uebe, R. & Schuler, D. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 14, 621–637 (2016).

    CAS  Article  Google Scholar 

  • 5.

    Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016).

    CAS  Article  Google Scholar 

  • 6.

    Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000).

    CAS  Article  Google Scholar 

  • 7.

    Schulten, K., Swenberg, C. E. & Weller, A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Phys. Chem. 111, 1–5 (1978).

    Article  Google Scholar 

  • 8.

    Rodgers, C. T. & Hore, P. J. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl Acad. Sci. USA 106, 353–360 (2009).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Kerpal, C. et al. Chemical compass behaviour at microtesla magnetic fields strengthens the radical pair hypothesis of avian magnetoreception. Nat. Commun. 10, 3707 (2019).

    ADS  Article  Google Scholar 

  • 10.

    Maeda, K. et al. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc. Natl Acad. Sci. USA 109, 4774–4779 (2012).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Emery, P. et al. Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26, 493–504 (2000).

    CAS  Article  Google Scholar 

  • 12.

    Zhu, H. et al. The two CRYs of the butterfly. Curr. Biol. 15, R953–R954 (2005).

    CAS  Article  Google Scholar 

  • 13.

    Zoltowski, B. D. et al. Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon. Proc. Natl Acad. Sci. USA 116, 19449–19457 (2019).

    CAS  Article  Google Scholar 

  • 14.

    Merlin, C., Beaver, L. E., Taylor, O. R., Wolfe, S. A. & Reppert, S. M. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases. Genome Res. 23, 159–168 (2013).

    CAS  Article  Google Scholar 

  • 15.

    Michael, A. K., Fribourgh, J. L., Van Gelder, R. N. & Partch, C. L. Animal cryptochromes: divergent roles in light perception, circadian timekeeping and beyond. Photochem. Photobiol. 93, 128–140 (2017).

    CAS  Article  Google Scholar 

  • 16.

    Yuan, Q., Metterville, D., Briscoe, A. D. & Reppert, S. M. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24, 948–955 (2007).

    CAS  Article  Google Scholar 

  • 17.

    Zhang, Y., Markert, M. J., Groves, S. C., Hardin, P. E. & Merlin, C. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity. Proc. Natl Acad. Sci. USA 114, E7516–E7525 (2017).

    CAS  Article  Google Scholar 

  • 18.

    Fedele, G. et al. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genet. 10, e1004804 (2014).

    Article  Google Scholar 

  • 19.

    Fedele, G., Green, E. W., Rosato, E. & Kyriacou, C. P. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nat. Commun. 5, 4391 (2014).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Gegear, R. J., Casselman, A., Waddell, S. & Reppert, S. M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 1014–1018 (2008).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Gegear, R. J., Foley, L. E., Casselman, A. & Reppert, S. M. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 463, 804–807 (2010).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Foley, L. E., Gegear, R. J. & Reppert, S. M. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat. Commun. 2, 356 (2011).

    ADS  Article  Google Scholar 

  • 23.

    Kutta, R. J., Archipowa, N., Johannissen, L. O., Jones, A. R. & Scrutton, N. S. Vertebrate cryptochromes are vestigial flavoproteins. Sci. Rep. 7, 44906 (2017).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Zhu, H., Gegear, R. J., Casselman, A., Kanginakudru, S. & Reppert, S. M. Defining behavioral and molecular differences between summer and migratory monarch butterflies. BMC Biol. 7, 14 (2009).

    Article  Google Scholar 

  • 25.

    Lin, C., Top, D., Manahan, C. C., Young, M. W. & Crane, B. R. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction. Proc. Natl Acad. Sci. USA 115, 3822–3827 (2018).

    CAS  Article  Google Scholar 

  • 26.

    Nohr, D. et al. Extended electron-transfer in animal cryptochromes mediated by a tetrad of aromatic amino acids. Biophys. J. 111, 301–311 (2016).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Nohr, D. et al. Determination of radical-radical distances in light-active proteins and their implication for biological magnetoreception. Angew. Chem. Int. Ed. Engl. 56, 8550–8554 (2017).

    CAS  Article  Google Scholar 

  • 28.

    Palomares, L. A., Joosten, C. E., Hughes, P. R., Granados, R. R. & Shuler, M. L. Novel insect cell line capable of complex N-glycosylation and sialylation of recombinant proteins. Biotechnol. Prog. 19, 185–192 (2003).

    CAS  Article  Google Scholar 

  • 29.

    Bazalova, O. et al. Cryptochrome 2 mediates directional magnetoreception in cockroaches. Proc. Natl Acad. Sci. USA 113, 1660–1665 (2016).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Merlin, C., Gegear, R. J. & Reppert, S. M. Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies. Science 325, 1700–1704 (2009).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Yoshii, T., Ahmad, M. & Helfrich-Forster, C. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 7, e1000086 (2009).

    Article  Google Scholar 

  • 32.

    Worster, S., Mouritsen, H. & Hore, P. J. A light-dependent magnetoreception mechanism insensitive to light intensity and polarization. J. R. Soc. Interface 14, (2017).

  • 33.

    Oztürk, N., Song, S.-H., Selby, C. P. & Sancar, A. Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis. J. Biol. Chem. 283, 3256–3263 (2008).

    Article  Google Scholar 

  • 34.

    Wu, H., Scholten, A., Einwich, A., Mouritsen, H. & Koch, K.-W. Protein-protein interaction of the putative magnetoreceptor cryptochrome 4 expressed in the avian retina. Sci. Rep. 10, 7364 (2020).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Wan, G.-J. et al. Reduced geomagnetic field may affect positive phototaxis and flight capacity of a migratory rice planthopper. Anim. Behav. 121, 107–116 (2016).

    Article  Google Scholar 

  • 36.

    Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).

    CAS  Article  Google Scholar 

  • 37.

    Iiams, S. E., Lugena, A. B., Zhang, Y., Hayden, A. N. & Merlin, C. Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly. Proc. Natl Acad. Sci. USA 116, 25214–25221 (2019).

    CAS  Article  Google Scholar 

  • 38.

    Markert, M. J. et al. Genomic access to monarch migration using TALEN and CRISPR/Cas9-mediated targeted mutagenesis. G3 (Bethesda) 6, 905–915 (2016).

    CAS  Article  Google Scholar 

  • 39.

    Jao, L. E., Wente, S. R. & Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl Acad. Sci. USA 110, 13904–13909 (2013).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Kim, J. M., Kim, D., Kim, S. & Kim, J. S. Genotyping with CRISPR-Cas-derived RNA-guided endonucleases. Nat. Commun. 5, 3157 (2014).

    ADS  Article  Google Scholar 

  • 41.

    Zhu, H. et al. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol. 6, e4 (2008).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism

    Scientists as engaged citizens