Cody, E. M. & Dixon, B. P. Hemolytic uremic syndrome. Pediatr. Clin. North Am. 66, 235–246. https://doi.org/10.1016/j.pcl.2018.09.011 (2019).
Chiang, Y. N., Penades, J. R. & Chen, J. Genetic transduction by phages and chromosomal islands: The new and noncanonical. PLoS Pathog 15, e1007878. https://doi.org/10.1371/journal.ppat.1007878 (2019).
Penades, J. R. & Christie, G. E. The phage-inducible chromosomal islands: A family of highly evolved molecular parasites. Annu. Rev. Virol. 2, 181–201. https://doi.org/10.1146/annurev-virology-031413-085446 (2015).
Valilis, E., Ramsey, A., Sidiq, S. & DuPont, H. L. Non-O157 Shiga toxin-producing Escherichia coli-A poorly appreciated enteric pathogen: Systematic review. Int. J. Infect Dis. 76, 82–87. https://doi.org/10.1016/j.ijid.2018.09.002 (2018).
Murinda, S. E. et al. Shiga toxin-producing Escherichia coli in mastitis: An international perspective. Foodborne Pathog. Dis. 16, 229–243. https://doi.org/10.1089/fpd.2018.2491 (2019).
Feiner, R. et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 13, 641–650. https://doi.org/10.1038/nrmicro3527 (2015).
Bikard, D. & Marraffini, L. A. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages. Curr. Opin. Immunol. 24, 15–20. https://doi.org/10.1016/j.coi.2011.10.005 (2012).
Hoskisson, P. A. & Smith, M. C. Hypervariation and phase variation in the bacteriophage “resistome”. Curr. Opin. Microbiol. 10, 396–400. https://doi.org/10.1016/j.mib.2007.04.003 (2007).
De Ste Croix, M. et al. Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS Microbiol. Rev. 41, S3–S15. https://doi.org/10.1093/femsre/fux025 (2017).
Heredia, N. & Garcia, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 4, 250–255. https://doi.org/10.1016/j.aninu.2018.04.006 (2018).
Fatima, R. & Aziz, M. in StatPearls (2019).
Mellor, G. E. et al. National Survey of Shiga Toxin-Producing Escherichia coli Serotypes O26, O45, O103, O111, O121, O145, and O157 in Australian Beef Cattle Feces. J. Food Prot. 79, 1868–1874. https://doi.org/10.4315/0362-028X.JFP-15-507 (2016).
Kampmeier, S., Berger, M., Mellmann, A., Karch, H. & Berger, P. The 2011 German enterohemorrhagic Escherichia coli O104:H4 outbreak-the danger is still out there. Curr. Top. Microbiol. Immunol. 416, 117–148. https://doi.org/10.1007/82_2018_107 (2018).
Lee, M. S. & Tesh, V. L. Roles of shiga toxins in immunopathology. Toxins (Basel) https://doi.org/10.3390/toxins11040212 (2019).
Schmidt, H. Shiga-toxin-converting bacteriophages. Res. Microbiol. 152, 687–695. https://doi.org/10.1016/s0923-2508(01)01249-9 (2001).
Herold, S., Karch, H. & Schmidt, H. Shiga toxin-encoding bacteriophages–genomes in motion. Int. J. Med. Microbiol. 294, 115–121. https://doi.org/10.1016/j.ijmm.2004.06.023 (2004).
Chakraborty, D., Clark, E., Mauro, S. A. & Koudelka, G. B. Molecular mechanisms governing “hair-trigger” induction of shiga toxin-encoding prophages. Viruses https://doi.org/10.3390/v10050228 (2018).
Bloch, S. et al. Inhibition of Shiga toxin-converting bacteriophage development by novel antioxidant compounds. J. Enzyme Inhib. Med. Chem. 33, 639–650. https://doi.org/10.1080/14756366.2018.1444610 (2018).
Fang, Y., Mercer, R. G., McMullen, L. M. & Ganzle, M. G. Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01378-17 (2017).
Smith, D. L. et al. Comparative genomics of Shiga toxin encoding bacteriophages. BMC Genomics 13, 311. https://doi.org/10.1186/1471-2164-13-311 (2012).
Kakoullis, L., Papachristodoulou, E., Chra, P. & Panos, G. Shiga toxin-induced haemolytic uraemic syndrome and the role of antibiotics: A global overview. J. Infect. 79, 75–94. https://doi.org/10.1016/j.jinf.2019.05.018 (2019).
Kavanagh, D., Raman, S. & Sheerin, N. S. Management of hemolytic uremic syndrome. F1000Prime Rep 6, 119. https://doi.org/10.12703/P6-119 (2014).
James, C. E. et al. Lytic and lysogenic infection of diverse Escherichia coli and Shigella strains with a verocytotoxigenic bacteriophage. Appl. Environ. Microbiol. 67, 4335–4337. https://doi.org/10.1128/aem.67.9.4335-4337.2001 (2001).
Smith, D. L. et al. Multilocus characterization scheme for shiga toxin-encoding bacteriophages. Appl. Environ. Microbiol. 73, 8032–8040. https://doi.org/10.1128/AEM.01278-07 (2007).
Eichhorn, I. et al. Lysogenic conversion of atypical enteropathogenic Escherichia coli (aEPEC) from human, murine, and bovine origin with bacteriophage Phi3538 Deltastx2::cat proves their enterohemorrhagic E. coli (EHEC) progeny. Int. J. Med. Microbiol. 308, 890–898. https://doi.org/10.1016/j.ijmm.2018.06.005 (2018).
Khalil, R. K., Skinner, C., Patfield, S. & He, X. Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and Escherichia coli strains. Pathog. Dis. https://doi.org/10.1093/femspd/ftw037 (2016).
Smith, D. L. et al. Short-tailed Stx phages exploit the conserved YaeT protein to disseminate Shiga toxin genes among enterobacteria. J. Bacteriol. 189, 7223–7233. https://doi.org/10.1128/JB.00824-07 (2007).
Botos, I., Noinaj, N. & Buchanan, S. K. Insertion of proteins and lipopolysaccharide into the bacterial outer membrane. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0224 (2017).
Knirel, Y. A. et al. Variations in O-antigen biosynthesis and O-acetylation associated with altered phage sensitivity in Escherichia coli 4s. J. Bacteriol. 197, 905–912. https://doi.org/10.1128/JB.02398-14 (2015).
Golomidova, A. K. et al. Branched lateral tail fiber organization in T5-like bacteriophages DT57C and DT571/2 is revealed by genetic and functional analysis. Viruses https://doi.org/10.3390/v8010026 (2016).
Kulikov, E. E., Golomidova, A. K., Prokhorov, N. S., Ivanov, P. A. & Letarov, A. V. High-throughput LPS profiling as a tool for revealing of bacteriophage infection strategies. Sci. Rep. 9, 2958. https://doi.org/10.1038/s41598-019-39590-8 (2019).
van der Ley, P., de Graaff, P. & Tommassen, J. Shielding of Escherichia coli outer membrane proteins as receptors for bacteriophages and colicins by O-antigenic chains of lipopolysaccharide. J. Bacteriol. 168, 449–451. https://doi.org/10.1128/jb.168.1.449-451.1986 (1986).
Kunisaki, H. & Tanji, Y. Intercrossing of phage genomes in a phage cocktail and stable coexistence with Escherichia coli O157:H7 in anaerobic continuous culture. Appl. Microbiol. Biotechnol. 85, 1533–1540. https://doi.org/10.1007/s00253-009-2230-2 (2010).
Golomidova, A. K., Kulikov, E. E., Babenko, V. V., Kostryukova, E. S. & Letarov, A. V. Complete genome sequence of bacteriophage St11Ph5, which Infects uropathogenic Escherichia coli strain up11. Genome Announcements https://doi.org/10.1128/genomeA.01371-17 (2018).
Golomidova, A. K., Naumenko, O. I., Senchenkova, S. N., Knirel, Y. A. & Letarov, A. V. The O-polysaccharide of Escherichia coli F5, which is structurally related to that of E. coli O28ab, provides cells only weak protection against bacteriophage attack. Arch. Virol. 164, 2783–2787. https://doi.org/10.1007/s00705-019-04371-1 (2019).
Knirel, Y. A. et al. Structure and gene cluster of the O antigen of Escherichia coli F17, a candidate for a new O-serogroup. Int. J. Biol. Macromol. 124, 389–395. https://doi.org/10.1016/j.ijbiomac.2018.11.149 (2019).
Zdorovenko, E. L. et al. Structure of the O-polysaccharide of Escherichia coli O87. Carbohyd. Res. 412, 15–18. https://doi.org/10.1016/j.carres.2015.04.014 (2015).
Zdorovenko, E. L. et al. Corrigendum to “Structure of the O-polysaccharide of Escherichia coli O87” [Carbohydr. Res. 412 (2015) 15–18]. Carbohydrate Res. 464, 1. https://doi.org/10.1016/j.carres.2018.04.013 (2018).
Zdorovenko, E. L. et al. O-Antigens of Escherichia coli strains O81 and HS3–104 are structurally and genetically related, except O-Antigen glucosylation in E. coli HS3–104. Biochemistry 83, 534–541. https://doi.org/10.1134/S0006297918050061 (2018).
Kulikov, E. E. et al. Genomic sequencing and biological characteristics of a novel Escherichia coli bacteriophage 9g, a putative representative of a new Siphoviridae genus. Viruses 6, 5077–5092. https://doi.org/10.3390/v6125077 (2014).
Golomidova, A. K. et al. Escherichia coli bacteriophage Gostya9, representing a new species within the genus T5virus. Adv. Virol. 164, 879–884. https://doi.org/10.1007/s00705-018-4113-2 (2019).
Kulikov, E. et al. Isolation and characterization of a novel indigenous intestinal N4-related coliphage vB_EcoP_G7C. Virology 426, 93–99. https://doi.org/10.1016/j.virol.2012.01.027 (2012).
Prokhorov, N. S. et al. Function of bacteriophage G7C esterase tailspike in host cell adsorption. Mol. Microbiol. 105, 385–398. https://doi.org/10.1111/mmi.13710 (2017).
Zdorovenko, E. L. et al. Corrigendum to “Structure of the O-polysaccharide of Escherichia coli O87”. Carbohydrate Res. 412, 15–18. https://doi.org/10.1016/j.carres.2018.04.013 (2015).
Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).
Samson, J. E., Magadan, A. H., Sabri, M. & Moineau, S. Revenge of the phages: Defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687. https://doi.org/10.1038/nrmicro3096 (2013).
Pawlak, A. et al. Salmonella O48 serum resistance is connected with the elongation of the lipopolysaccharide O-Antigen containing sialic acid. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18102022 (2017).
Coggon, C. F. et al. A novel method of serum resistance by Escherichia coli that causes urosepsis. mBio https://doi.org/10.1128/mBio.00920-18 (2018).
Kintz, E. et al. Salmonella enterica Serovar Typhi lipopolysaccharide O-antigen modification impact on serum resistance and antibody recognition. Infect. Immunity https://doi.org/10.1128/IAI.01021-16 (2017).
Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A. 97, 6640–6645. https://doi.org/10.1073/pnas.120163297 (2000).
Source: Ecology - nature.com