Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control and competition. Am. Nat. 879, 412–425 (1960).
Oksanen, L., Fretwell, S. D., Arruda, J. & Niemelä, P. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118, 240–261 (1981).
Oksanen, L. & Oksanen, T. The logic and realism of the hypothesis of exploitation ecosystems. Am. Nat. 155, 703–723 (2000).
Ripple, W. J. & Beschta, R. L. Trophic cascades in Yellowstone: the first 15 years after wolf reintroduction. Biol. Conserv. 145, 205–213 (2012).
Smith, C. C. & Reichman, O. J. The evolution of food caching by birds and mammals. Ann. Rev. Ecol. Evol. Syst. 15, 329–351 (1984).
Couvreur, M. et al. Epizoochory by large herbivores: merging data with models. Basic Appl. Ecol. 9, 204–212 (2008).
Kulbaba, M. W., Tardif, J. C. & Staniforth, R. J. Morphological and ecological relationships between burrs and furs. Am. Mid Nat. 161, 380–391 (2009).
Schmitz, O. J., Hawlena, D. & Trussell, G. C. Predator control of ecosystem nutrient dynamics. Ecol. Lett. 13, 1199–1209 (2010).
Hämäläinen, A. et al. The ecological significance of secondary seed dispersal by carnivores. Ecosphere 8, 1–16 (2017).
Leroux, S. J. & Schmitz, O. J. Predator-driven elemental cycling: the impact of predation and risk effects on ecosystem stoichiometry. Ecol. Evol. 5, 4976–4988 (2015).
Hilderbrand, G. V., Hanley, T. A., Robbins, C. T. & Schwartz, C. C. Role of brown bears (Ursus arctos) in the flow of marine nitrogen into a terrestrial ecosystem. Oecologia 121, 546–550 (1999).
Ben-David, M., Bowyer, R. T., Duffy, L. K., Roby, D. D. & Schell, D. M. Social behaviour and ecosystem processes: river otter latrines and nutrient dynamics of terrestrial vegetation. Ecology 79, 2567–2571 (1998).
Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).
Sanders, D. et al. Integrating ecosystem engineering and food webs. Oikos 123, 513–524 (2014).
Larivière, S. & Pasitschniak-Arts, M. Vulpes vulpes. Mamm. Species 537, 1–11 (1996).
Kurek, P. & Holeksa, J. Grains in the diets of medium-sized carnivores—a case of diplochory?. Pol. J. Ecol. 63, 286–290 (2015).
Godó, L. et al. Ecosystem engineering by foxes is mediated by the landscape context—a case study from steppic burial mounds. Ecol. Evol. 8, 7044–7054 (2018).
Bartoń, K. A. & Zalewski, A. Winter severity limits red fox populations in Eurasia. Glob. Ecol. Biogeogr 16, 281–289 (2007).
Berteaux, D., Gallant, D., Sacks, B. N. & Statham, M. J. Red foxes (Vulpes vulpes) at their expanding front in the Canadian Arctic have indigenous maternal ancestry. Polar Biol. 38, 913–917 (2015).
Post, E. et al. Ecological dynamics across the arctic associated with recent climate change. Science 325, 1355–1358 (2009).
Beck, P. S. A. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6, 1–10 (2011).
Buermann, W. et al. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophys. Res. Lett. 41, 1995–2002 (2014).
Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).
Schachtman, D. P., Reid, R. J. & Ayling, S. M. Phosphorus uptake by plants: from soil to cell. Plant Phys. 116, 447–453 (1998).
Nordin, A., Högberg, P. & Näsholm, T. Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia 129, 125–132 (2001).
Hartley, I. P., Hopkins, D. W., Sommerkorn, M. & Wookey, P. A. The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biol. Biochem. 42, 92–100 (2010).
Chapin, S. F. III., Matson, P. A. & Vitousek, P. Principles of Terrestrial Ecosystem Ecology 2nd edn. (Springer, Berlin, 2011).
Grime, J. P. Vegetation classification by reference to strategies. Nature 250, 26–31 (1974).
Grime, J. P. Plant Strategies and Vegetation Processes (Wiley, Hoboken, 1979).
Suding, K. N. et al. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. PNAS 12, 4387–4392 (2005).
Roth, J. D. Variability in marine resources affects arctic fox population dynamics. J. Anim. Ecol. 72, 668–676 (2003).
Gallant, D., Slough, B. G., Reid, D. G. & Berteaux, D. Arctic fox versus red fox in the warming Arctic: four decades of den surveys in north Yukon. Polar Biol. 35, 1421–1431 (2012).
Ritchie, J. C. The vegetation of northern Manitoba: II. A prisere on the Hudson Bay lowlands. Ecology 38, 429–435 (1957).
Johnson, K. L. Wildflowers of Churchill and the Hudson Bay Region (Manitoba Museum of Nature, Winnipeg, 1987).
Brook, R. K. Structure and Dynamics of the Vegetation in Wapusk National Park and the Cape Churchill Wildlife Management Area of Manitoba, Community and Landscape Scales. MSc Thesis thesis, University of Manitoba (2001).
Smith, R. E. et al. (ed pp 277–298 Agriculture and Agri-Food Canada Land Resource Unit Research Branch Technical Bulletin 1998–9E) (1998).
Tews, J. Hummock vegetation at the arctic tree-line near Churchill, Manitoba. Can. Field Nat. 118, 590–594 (2004).
Kurek, P., Kapusta, A. & Holeksa, J. Burrowing by badgers (Meles meles) and foxes (Vulpes vulpes) changes soil conditions and vegetation in a European temperate forest. Ecol. Res. 29, 1–11 (2014).
Gharajehdaghipour, T., Roth, J. D., Fafard, P. M. & Markham, J. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens. Sci. Rep. 6, 24020. https://doi.org/10.1038/srep24020 (2016).
Khan, S. A., Mulvaney, R. L. & Hoeft, R. G. Direct-diffusion methods for inorganic nitrogen analysis of soil. Soil Sci. Soc. Am. J. 64, 1083–1089 (2000).
Kalra, Y. P. & Maynard, D. G. Methods Manual for Soil and Plant Analysis (Forestry Canada. Northwest Reg. North. For. Cent. Edmonton, Ab., 1991).
Wardle, D. A. Changes in the microbial biomass and metabolic quotient during leaf litter succession in some New Zealand forest and scrubland ecosystems. Funct. Ecol. 7, 346–355 (1993).
R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna Austria, 2020).
Dufrene, M. & Legendre, P. Species assemblages and Indicator species: the need for a flexible asymmetrical approach. Ecol. Mon. 67, 345–366 (1997).
Ordination and Multivariate Analysis for Ecology. Version 1.8 (2016).
Rubinstein, R. Y. Simulation and the Monte Carlo method 1st edn. (Wiley, Hoboken, 1981).
Pwr: basic functions for power analysis. R package v1.3–0. (2020).
Wijesinghe, D. K., John, E. A. & Hutchings, M. J. Does pattern of soil resource heterogeneity determine plant and community structure? An experimental investigation. J. Ecol. 93, 99–112 (2005).
Moore, T. R. The nutrient status of Subarctic woodland soils. Arctic Alpine. Res. 12, 147–160 (1980).
Vance, E. D. & Chapin, S. F. III. Substrate limitations to microbial activity in taiga forest floors. Soil Biol. Biochem. 33, 173–188 (2011).
Green, J. S. & Flanders, J. T. Diameter and pH comparisons of coyote and red fox scats. J. Wildl. Manag. 45, 765–767 (1981).
Lee, S.-H., Jang, I., Chae, N., Choi, T. & Kang, H. Organic layer serves as a hotspot of microbial activity and abundance in arctic tundra soils. Microb. Ecol. 65, 405–414 (2013).
Pitman, R. M. Wood ash use in forestry—a review of the environmental impacts. Forestry 79, 563–588 (2006).
Saarsalmi, A., Smolander, A., Moilanen, M. & Kukkola, M. Wood ash in boreal, low-productive pine stands on upland and peatland sites: long-term effects on stand growth and soil properties. For. Ecol. Manag. 327, 86–95 (2014).
Facelli, J. M. & Pickett, S. T. A. Plant litter: its dynamics and effects on plant community structure. Bot. Rev. 57, 1–32 (1991).
Michelsen, A., Schmidt, I. K., Jonasson, S., Quarmby, C. & Sleep, D. Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105, 53–63 (1996).
Näsholm, T. et al. Boreal forest plants take up organic nitrogen. Nature 392, 914–917 (1998).
Fafard, P. M., Roth, J. D. & Markham, J. Nutrient deposition on Arctic fox dens creates atypical tundra plant assemblages at the edge of the Arctic. J. Veg. Sci. 31, 173–179. https://doi.org/10.1111/jvs.12828 (2019).
Hovstad, K. A., Borvik, S. & Ohlson, M. Epizoochorous seed dispersal in relation to seed availability—an experiment with a red fox dummy. J. Veg. Sci. 20, 455–464 (2009).
Rosalino, L. M. & Santos-Reis, M. Fruit consumption by carnivores in Mediterranean Europe. Mammal Rev. 39, 67–78 (2009).
Grinath, J. B., Larios, L., Prugh, L. R., Brashares, J. S. & Suding, K. N. Environmental gradients determine the potential for ecosystem engineering effects. Oikos https://doi.org/10.1111/oik.05768 (2019).
Crane, C. M. & Bertness, M. D. Ecosystem engineering across environmental gradients: Implications for conservation and management. Bioscience 56, 211–218 (2006).
Bruun, H. H., Österdahl, S., Moen, J. & Angerbjorn, A. Distinct patterns in alpine vegetation around dens of the Arctic fox. Ecography 28, 81–87 (2005).
Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 1–15 (2011).
Márton, M. et al. Den site selection of the European badger, Meles meles, and the red fox, Vulpes vulpes, Hungary. J. Vertebr. Biol. 65, 72–79 (2016).
Towne, E. G. Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 122, 232–239 (2000).
Gharajedaghipour, T. & Roth, J. D. Predators attract prey through ecosystem engineering in the Arctic. Ecosphere 9, e02077 (2018).
Source: Ecology - nature.com