in

Foxes fertilize the subarctic forest and modify vegetation through denning

  • 1.

    Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control and competition. Am. Nat. 879, 412–425 (1960).

    Google Scholar 

  • 2.

    Oksanen, L., Fretwell, S. D., Arruda, J. & Niemelä, P. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118, 240–261 (1981).

    Article  Google Scholar 

  • 3.

    Oksanen, L. & Oksanen, T. The logic and realism of the hypothesis of exploitation ecosystems. Am. Nat. 155, 703–723 (2000).

    PubMed  Article  Google Scholar 

  • 4.

    Ripple, W. J. & Beschta, R. L. Trophic cascades in Yellowstone: the first 15 years after wolf reintroduction. Biol. Conserv. 145, 205–213 (2012).

    Article  Google Scholar 

  • 5.

    Smith, C. C. & Reichman, O. J. The evolution of food caching by birds and mammals. Ann. Rev. Ecol. Evol. Syst. 15, 329–351 (1984).

    Article  Google Scholar 

  • 6.

    Couvreur, M. et al. Epizoochory by large herbivores: merging data with models. Basic Appl. Ecol. 9, 204–212 (2008).

    Article  Google Scholar 

  • 7.

    Kulbaba, M. W., Tardif, J. C. & Staniforth, R. J. Morphological and ecological relationships between burrs and furs. Am. Mid Nat. 161, 380–391 (2009).

    Article  Google Scholar 

  • 8.

    Schmitz, O. J., Hawlena, D. & Trussell, G. C. Predator control of ecosystem nutrient dynamics. Ecol. Lett. 13, 1199–1209 (2010).

    PubMed  Article  Google Scholar 

  • 9.

    Hämäläinen, A. et al. The ecological significance of secondary seed dispersal by carnivores. Ecosphere 8, 1–16 (2017).

    Article  Google Scholar 

  • 10.

    Leroux, S. J. & Schmitz, O. J. Predator-driven elemental cycling: the impact of predation and risk effects on ecosystem stoichiometry. Ecol. Evol. 5, 4976–4988 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Hilderbrand, G. V., Hanley, T. A., Robbins, C. T. & Schwartz, C. C. Role of brown bears (Ursus arctos) in the flow of marine nitrogen into a terrestrial ecosystem. Oecologia 121, 546–550 (1999).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 12.

    Ben-David, M., Bowyer, R. T., Duffy, L. K., Roby, D. D. & Schell, D. M. Social behaviour and ecosystem processes: river otter latrines and nutrient dynamics of terrestrial vegetation. Ecology 79, 2567–2571 (1998).

    Article  Google Scholar 

  • 13.

    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).

    Article  Google Scholar 

  • 14.

    Sanders, D. et al. Integrating ecosystem engineering and food webs. Oikos 123, 513–524 (2014).

    Article  Google Scholar 

  • 15.

    Larivière, S. & Pasitschniak-Arts, M. Vulpes vulpes. Mamm. Species 537, 1–11 (1996).

    Article  Google Scholar 

  • 16.

    Kurek, P. & Holeksa, J. Grains in the diets of medium-sized carnivores—a case of diplochory?. Pol. J. Ecol. 63, 286–290 (2015).

    Article  Google Scholar 

  • 17.

    Godó, L. et al. Ecosystem engineering by foxes is mediated by the landscape context—a case study from steppic burial mounds. Ecol. Evol. 8, 7044–7054 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Bartoń, K. A. & Zalewski, A. Winter severity limits red fox populations in Eurasia. Glob. Ecol. Biogeogr 16, 281–289 (2007).

    Article  Google Scholar 

  • 19.

    Berteaux, D., Gallant, D., Sacks, B. N. & Statham, M. J. Red foxes (Vulpes vulpes) at their expanding front in the Canadian Arctic have indigenous maternal ancestry. Polar Biol. 38, 913–917 (2015).

    Article  Google Scholar 

  • 20.

    Post, E. et al. Ecological dynamics across the arctic associated with recent climate change. Science 325, 1355–1358 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 21.

    Beck, P. S. A. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6, 1–10 (2011).

    Article  Google Scholar 

  • 22.

    Buermann, W. et al. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophys. Res. Lett. 41, 1995–2002 (2014).

    ADS  Article  Google Scholar 

  • 23.

    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 24.

    Schachtman, D. P., Reid, R. J. & Ayling, S. M. Phosphorus uptake by plants: from soil to cell. Plant Phys. 116, 447–453 (1998).

    CAS  Article  Google Scholar 

  • 25.

    Nordin, A., Högberg, P. & Näsholm, T. Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia 129, 125–132 (2001).

    ADS  PubMed  Article  Google Scholar 

  • 26.

    Hartley, I. P., Hopkins, D. W., Sommerkorn, M. & Wookey, P. A. The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biol. Biochem. 42, 92–100 (2010).

    CAS  Article  Google Scholar 

  • 27.

    Chapin, S. F. III., Matson, P. A. & Vitousek, P. Principles of Terrestrial Ecosystem Ecology 2nd edn. (Springer, Berlin, 2011).

    Google Scholar 

  • 28.

    Grime, J. P. Vegetation classification by reference to strategies. Nature 250, 26–31 (1974).

    ADS  Article  Google Scholar 

  • 29.

    Grime, J. P. Plant Strategies and Vegetation Processes (Wiley, Hoboken, 1979).

    Google Scholar 

  • 30.

    Suding, K. N. et al. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. PNAS 12, 4387–4392 (2005).

    ADS  Article  CAS  Google Scholar 

  • 31.

    Roth, J. D. Variability in marine resources affects arctic fox population dynamics. J. Anim. Ecol. 72, 668–676 (2003).

    PubMed  Article  Google Scholar 

  • 32.

    Gallant, D., Slough, B. G., Reid, D. G. & Berteaux, D. Arctic fox versus red fox in the warming Arctic: four decades of den surveys in north Yukon. Polar Biol. 35, 1421–1431 (2012).

    Article  Google Scholar 

  • 33.

    Ritchie, J. C. The vegetation of northern Manitoba: II. A prisere on the Hudson Bay lowlands. Ecology 38, 429–435 (1957).

    Article  Google Scholar 

  • 34.

    Johnson, K. L. Wildflowers of Churchill and the Hudson Bay Region (Manitoba Museum of Nature, Winnipeg, 1987).

    Google Scholar 

  • 35.

    Brook, R. K. Structure and Dynamics of the Vegetation in Wapusk National Park and the Cape Churchill Wildlife Management Area of Manitoba, Community and Landscape Scales. MSc Thesis thesis, University of Manitoba (2001).

  • 36.

    Smith, R. E. et al. (ed pp 277–298 Agriculture and Agri-Food Canada Land Resource Unit Research Branch Technical Bulletin 1998–9E) (1998).

  • 37.

    Tews, J. Hummock vegetation at the arctic tree-line near Churchill, Manitoba. Can. Field Nat. 118, 590–594 (2004).

    Article  Google Scholar 

  • 38.

    Kurek, P., Kapusta, A. & Holeksa, J. Burrowing by badgers (Meles meles) and foxes (Vulpes vulpes) changes soil conditions and vegetation in a European temperate forest. Ecol. Res. 29, 1–11 (2014).

    CAS  Article  Google Scholar 

  • 39.

    Gharajehdaghipour, T., Roth, J. D., Fafard, P. M. & Markham, J. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens. Sci. Rep. 6, 24020. https://doi.org/10.1038/srep24020 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Khan, S. A., Mulvaney, R. L. & Hoeft, R. G. Direct-diffusion methods for inorganic nitrogen analysis of soil. Soil Sci. Soc. Am. J. 64, 1083–1089 (2000).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Kalra, Y. P. & Maynard, D. G. Methods Manual for Soil and Plant Analysis (Forestry Canada. Northwest Reg. North. For. Cent. Edmonton, Ab., 1991).

  • 42.

    Wardle, D. A. Changes in the microbial biomass and metabolic quotient during leaf litter succession in some New Zealand forest and scrubland ecosystems. Funct. Ecol. 7, 346–355 (1993).

    Article  Google Scholar 

  • 43.

    R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna Austria, 2020).

  • 44.

    Dufrene, M. & Legendre, P. Species assemblages and Indicator species: the need for a flexible asymmetrical approach. Ecol. Mon. 67, 345–366 (1997).

    Google Scholar 

  • 45.

    Ordination and Multivariate Analysis for Ecology. Version 1.8 (2016).

  • 46.

    Rubinstein, R. Y. Simulation and the Monte Carlo method 1st edn. (Wiley, Hoboken, 1981).

    Google Scholar 

  • 47.

    Pwr: basic functions for power analysis. R package v1.3–0. (2020).

  • 48.

    Wijesinghe, D. K., John, E. A. & Hutchings, M. J. Does pattern of soil resource heterogeneity determine plant and community structure? An experimental investigation. J. Ecol. 93, 99–112 (2005).

    Article  Google Scholar 

  • 49.

    Moore, T. R. The nutrient status of Subarctic woodland soils. Arctic Alpine. Res. 12, 147–160 (1980).

    CAS  Article  Google Scholar 

  • 50.

    Vance, E. D. & Chapin, S. F. III. Substrate limitations to microbial activity in taiga forest floors. Soil Biol. Biochem. 33, 173–188 (2011).

    Article  Google Scholar 

  • 51.

    Green, J. S. & Flanders, J. T. Diameter and pH comparisons of coyote and red fox scats. J. Wildl. Manag. 45, 765–767 (1981).

    Article  Google Scholar 

  • 52.

    Lee, S.-H., Jang, I., Chae, N., Choi, T. & Kang, H. Organic layer serves as a hotspot of microbial activity and abundance in arctic tundra soils. Microb. Ecol. 65, 405–414 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 53.

    Pitman, R. M. Wood ash use in forestry—a review of the environmental impacts. Forestry 79, 563–588 (2006).

    Article  Google Scholar 

  • 54.

    Saarsalmi, A., Smolander, A., Moilanen, M. & Kukkola, M. Wood ash in boreal, low-productive pine stands on upland and peatland sites: long-term effects on stand growth and soil properties. For. Ecol. Manag. 327, 86–95 (2014).

    Article  Google Scholar 

  • 55.

    Facelli, J. M. & Pickett, S. T. A. Plant litter: its dynamics and effects on plant community structure. Bot. Rev. 57, 1–32 (1991).

    Article  Google Scholar 

  • 56.

    Michelsen, A., Schmidt, I. K., Jonasson, S., Quarmby, C. & Sleep, D. Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105, 53–63 (1996).

    ADS  PubMed  Article  Google Scholar 

  • 57.

    Näsholm, T. et al. Boreal forest plants take up organic nitrogen. Nature 392, 914–917 (1998).

    ADS  Article  Google Scholar 

  • 58.

    Fafard, P. M., Roth, J. D. & Markham, J. Nutrient deposition on Arctic fox dens creates atypical tundra plant assemblages at the edge of the Arctic. J. Veg. Sci. 31, 173–179. https://doi.org/10.1111/jvs.12828 (2019).

    Article  Google Scholar 

  • 59.

    Hovstad, K. A., Borvik, S. & Ohlson, M. Epizoochorous seed dispersal in relation to seed availability—an experiment with a red fox dummy. J. Veg. Sci. 20, 455–464 (2009).

    Article  Google Scholar 

  • 60.

    Rosalino, L. M. & Santos-Reis, M. Fruit consumption by carnivores in Mediterranean Europe. Mammal Rev. 39, 67–78 (2009).

    Article  Google Scholar 

  • 61.

    Grinath, J. B., Larios, L., Prugh, L. R., Brashares, J. S. & Suding, K. N. Environmental gradients determine the potential for ecosystem engineering effects. Oikos https://doi.org/10.1111/oik.05768 (2019).

    Article  Google Scholar 

  • 62.

    Crane, C. M. & Bertness, M. D. Ecosystem engineering across environmental gradients: Implications for conservation and management. Bioscience 56, 211–218 (2006).

    Article  Google Scholar 

  • 63.

    Bruun, H. H., Österdahl, S., Moen, J. & Angerbjorn, A. Distinct patterns in alpine vegetation around dens of the Arctic fox. Ecography 28, 81–87 (2005).

    Article  Google Scholar 

  • 64.

    Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 1–15 (2011).

    Article  Google Scholar 

  • 65.

    Márton, M. et al. Den site selection of the European badger, Meles meles, and the red fox, Vulpes vulpes, Hungary. J. Vertebr. Biol. 65, 72–79 (2016).

    Google Scholar 

  • 66.

    Towne, E. G. Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 122, 232–239 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 67.

    Gharajedaghipour, T. & Roth, J. D. Predators attract prey through ecosystem engineering in the Arctic. Ecosphere 9, e02077 (2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Scientists as engaged citizens

    New fiber optic temperature sensing approach to keep fusion power plants running