in

Responses of intended and unintended receivers to a novel sexual signal suggest clandestine communication

  • 1.

    Martin, C. H., McGirr, J. A., Richards, E. J. & St John, M. E. How to investigate the origins of novelty: insights gained from genetic, behavioral, and fitness perspectives. Integr. Org. Biol. 1, https://doi.org/10.1093/iob/obz01 (2019).

  • 2.

    West-Eberhard, M. J. Sexual selection, social competition, and speciation. Q. Rev. Biol. 80, 47–53 (1983).

    Article  Google Scholar 

  • 3.

    Ritchie, M. G. Sexual selection and speciation. Annu. Rev. Ecol. Evol. Syst. 179, 2091–2112 (2007).

    Google Scholar 

  • 4.

    Rosenthal, G. G. Mate Choice: The Evolution of Sexual Decision Making from Microbes to Humans (Princeton University Press, 2017).

  • 5.

    Servedio, M. R. & Boughman, J. W. The role of sexual selection in local adaptation and speciation. Annu. Rev. Ecol. Evol. Syst. 48, 85–109 (2017).

    Article  Google Scholar 

  • 6.

    Svensson, E. I. & Gosden, T. P. Contemporary evolution of secondary sexual traits in the wild. Funct. Ecol. 21, 422–433 (2007).

    Article  Google Scholar 

  • 7.

    Svensson, E. I. Eco-evolutionary dynamics of sexual selection and sexual conflict. Funct. Ecol. 33, 66–72 (2019).

    Article  Google Scholar 

  • 8.

    Tinghitella, R. M. Rapid evolutionary change in a sexual signal: genetic control of the mutation ‘flatwing’ that renders male field crickets (Teleogryllus oceanicus) mute. Heredity 100, 261–267 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Lassance, J. M. & Löfstedt, C. Chemical communication: a jewel sheds light on signal evolution. Curr. Biol. 23, 739–834 (2013).

    Article  CAS  Google Scholar 

  • 10.

    Niehuis, O. et al. Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones. Nature 494, 345–348 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 11.

    Ryan, M. J. & Rand, A. S. Sexual selection and signal evolution: the ghost of biases past. Philos. Trans. R. Soc. B 340, 187–195 (1993).

    ADS  Article  Google Scholar 

  • 12.

    Ryan, M. J. & Rand, A. S. Female responses to ancestral advertisement calls in túngara frogs. Science 269, 390–392 (1995).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 13.

    Ryan, M. J. & Cummings, M. E. Perceptual biases and mate choice. Annu. Rev. Ecol. Evol. Syst. 44, 437–459 (2013).

    Article  Google Scholar 

  • 14.

    Bush, S. L. & Schul, J. Evolution of novel signal traits in the absence of female preferences in Neoconocephalus katydids (Orthoptera, Tettigoniidae). PLoS ONE 5, https://doi.org/10.1371/journal.pone.0012457 (2010).

  • 15.

    Kolm, N., Amcoff, M., Mann, R. P. & Arnqvist, G. Diversification of a food-mimicking male ornament via sensory drive. Curr. Biol. 22, 1440–1443 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Espmark, Y., Amundsen, T. & Rosenqvist, G. Animal Signals: Signalling and Signal Design in Animal Communication (Tapir Academic Press, 2000).

  • 17.

    Pfaus, J. G., Erickson, K. A. & Talianakis, S. Somatosensory conditioning of sexual arousal and copulatory behavior in the male rat: a model of fetish development. Physiol. Behav. 122, 1–7 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Cetinkaya, H. & Domjan, M. Sexual fetishism in a quail (Coturnix japonica) model system: test of reproductive success. J. Comp. Psychol. 120, 427–432 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Arak, A. & Enquist, M. Hidden preferences and the evolution of signals. Philos. Trans. R. Soc. B 340, 207–213 (1993).

    ADS  Article  Google Scholar 

  • 20.

    Burley, N. T. & Symanski, R. ‘A taste for the beautiful’: latent aesthetic mate preferences for white crests in two species of australian grassfinches. Am. Nat. 152, 792–802 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Ryan, M. J. Sexual selection, receiver biases, and the evolution of sex differences. Science 281, 1999–2003 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Ryan, M. J., Bernal, X. E. & Stanley Rand, A. Female mate choice and the potential for ornament evolution in túngara frogs Physalaemus pustulosus. Curr. Zool. 56, 343–357 (2010).

    Article  Google Scholar 

  • 23.

    Reichert, M. S., Finck, J. & Ronacher, B. Exploring the hidden landscape of female preferences for complex signals. Evolution 71, 1009–1024 (2017).

    PubMed  Article  Google Scholar 

  • 24.

    Ryan, M. J., Fox, J. H., Wilczynski, W. & Rand, A. S. Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature 343, 66–67 (1990).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 25.

    Moehring, A. J. & Boughman, J. W. Veiled preferences and cryptic female choice could underlie the origin of novel sexual traits. Biol. Lett. 15, 20180878 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Zuk, M. & Kolluru, G. R. Exploitation of sexual signals by predators and parasitoids. Q. Rev. Biol. 43, 415–438 (1998).

    Article  Google Scholar 

  • 27.

    Endler, J. A. Natural selection on color patterns in Poecilia reticulata. Evolution 34, 76–91 (1980).

    PubMed  Article  Google Scholar 

  • 28.

    Gray, D. A. & Cade, W. H. Sex, death and genetic variation: Natural and sexual selection on cricket song. Proc. R. Soc. Lond. B 266, 707–709 (1999).

    Article  Google Scholar 

  • 29.

    Rand, A. S. & Ryan, M. J. The adaptive significance of a complex vocal repertoire in a neotropical frog. Z. Tierpsychol. 57, 209–214 (1981).

    Article  Google Scholar 

  • 30.

    Lewkiewicz, D. A. & Zuk, M. Latency to resume calling after disturbance in the field cricket, Teleogryllus oceanicus, corresponds to population-level differences in parasitism risk. Behav. Ecol. Sociobiol. 55, 569–573 (2004).

    Article  Google Scholar 

  • 31.

    Tinghitella, R. M., Zuk, M., Beveridge, M. & Simmons, L. W. Island hopping introduces Polynesian field crickets to novel environments, genetic bottlenecks and rapid evolution. J. Evol. Biol. 24, 1199–1211 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Zhang, X. et al. Rapid parallel adaptation despite gene flow in silent crickets. Nat. Commun. https://doi.org/10.1038/s41467-020-20263-4 (2021).

  • 33.

    Bennet-Clark, H. C. Songs and the physics of sound production in Cricket Behavior and Neurobiology (eds Huber, F., Moore, T. E. & Werner, L.) 227–261 (Cornell University Press, New York, 1989).

  • 34.

    Bennet-Clark, H. C. Wing resonances in the Australian field cricket Teleogryllus oceanicus. J. Exp. Biol. 206, 1479–1496 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Zuk, M., Rotenberry, J. T. & Tinghitella, R. M. Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biol. Lett. 2, 521–524 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Pascoal, S. et al. Rapid convergent evolution in wild crickets. Curr. Biol. 24, 1369–1374 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Eldredge, L. G. & Evenhuis, N. L. Hawaii’s biodiversity: a detailed assessment of the numbers of species in the Hawaiian Islands. Bish. Mus. Occ. Pap. 76, 1–28 (2003).

    Google Scholar 

  • 38.

    Lehmann, G. U. C. Review of biogeography, host range and evolution of acoustic hunting in Ormiini (insecta, diptera, tachinidae), parasitoids of night-calling bushcrickets and crickets (insecta, orthoptera, ensifera). Zool. Anz. 242, 107–120 (2003).

    Article  Google Scholar 

  • 39.

    Zuk, M., Simmons, L. W. & Cupp, L. Calling characteristics of parasitized and unparasitized populations of the field cricket Teleogryllus oceanicus. Behav. Ecol. Sociobiol. 33, 339–343 (1993).

    Google Scholar 

  • 40.

    Tinghitella, R. M. & Zuk, M. Asymmetric mating preferences accommodated the rapid evolutionary loss of a sexual signal. Evolution 63, 2087–2098 (2009).

    Article  Google Scholar 

  • 41.

    Tinghitella, R. M., Broder, E. D., Gurule-Small, G. A., Hallagan, C. J. & Wilson, J. D. Purring crickets: the evolution of a novel sexual signal. Am. Nat. 192, 773–782 (2018).

    PubMed  Article  Google Scholar 

  • 42.

    Zuk, M., Bailey, N. W., Gray, B. & Rotenberry, J. T. Sexual signal loss: the link between behaviour and rapid evolutionary dynamics in a field cricket. J. Anim. Ecol. 87, 623–633 (2018).

    PubMed  Article  Google Scholar 

  • 43.

    Pascoal, S. et al. Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild. Evol. Lett. 4, 19–33 (2020).

    PubMed  Article  Google Scholar 

  • 44.

    Rayner, J. G., Aldridge, S., Montealegre-Z, F. & Bailey, N. W. A silent orchestra: convergent song loss in Hawaiian crickets is repeated, morphologically varied, and widespread. Ecology 100, https://doi.org/10.1002/ecy.2694 (2019).

  • 45.

    Rotenberry, J. T., Zuk, M., Simmons, L. W. & Hayes, C. Phonotactic parasitoids and cricket song structure: an evaluation of alternative hypotheses. Evol. Ecol. 10, 233–243 (1996).

    Article  Google Scholar 

  • 46.

    Moiseff, A., Pollack, G. S. & Hoy, R. R. Steering responses of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc. Natl Acad. Sci. USA 75, 4052–4056 (1978).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 47.

    Hoy, R. R., Pollack, G. S. & Moiseff, A. Species-recognition in the field cricket, Teleogryllus oceanicus: behavioral and neural mechanisms. Integr. Comp. Biol. 22, 597–607 (1982).

    Google Scholar 

  • 48.

    Bailey, N. W., Moran, P. A. & Hennig, R. M. Divergent mechanisms of acoustic mate recognition between closely related field cricket species (Teleogryllus spp.). Anim. Behav. 130, 17–25 (2017).

    Article  Google Scholar 

  • 49.

    Ryan, M. J. Sexual selection, sensory systems and sensory exploitation in Oxford Surveys. In Evolutionary Biology (eds Antonovics, J. & Futuyma, D. J.) 157–195 (Oxford University Press, Oxford, 1990).

  • 50.

    Imaizumi, K. & Pollack, G. S. Neural coding of sound frequency by cricket auditory receptors. J. Neurosci. 19, 1508–1516 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Oshinsky, M. L. & Hoy, R. R. Physiology of the auditory afferents in an acoustic parasitoid fly. J. Neurosci. 22, 7254–7263 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Farr, J. A. Male rarity or novelty, female choice behavior, and sexual selection in the guppy, Poecilia reticulata Peters (Pisces: Poeciliidae). Evolution 31, 162–168 (1977).

    PubMed  Article  Google Scholar 

  • 53.

    Jennions, M. D. & Petrie, M. Variation in mate choice and mating preferences: a review of causes and consequences. Biol. Rev. Camb. Philos. Soc. 72, 283–327 (1997).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Brooks, R. & Endler, J. A. Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection. Evolution 55, 1644–1655 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Fowler-Finn, K. D. & Rodríguez, R. L. Repeatability of mate preference functions in Enchenopa treehoppers (Hemiptera: Membracidae). Anim. Behav. 85, 493–499 (2013).

    Article  Google Scholar 

  • 56.

    Kilmer, J. T. et al. Describing mate preference functions and other function-valued traits. J. Evol. Biol. 30, 1658–1673 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Walker, T. J. A live trap for monitoring Euphasiopteryx and tests with E. ochracea (Diptera: Tachinidae). Fla. Entomol. 72, 314–319 (1989).

    Article  Google Scholar 

  • 58.

    Mason, A. C., Oshinsky, M. L. & Hoy, R. R. Hyperacute directional hearing in a microscale auditory system. Nature 410, 686–690 (2001).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Gray, D. A., Kunerth, H. D., Zuk, M., Cade, W. H. & Balenger, S. L. Molecular biogeography and host relations of a parasitoid fly. Ecol. Evol. 9, 11476–11493 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Paur, J. & Gray, D. A. Individual consistency, learning and memory in a parasitoid fly, Ormia ochracea. Anim. Behav. 82, 825–830 (2011).

    Article  Google Scholar 

  • 61.

    Bailey, N. W. & Zuk, M. Acoustic experience shapes female mate choice in field crickets. Proc. R. Soc. Lond. B 275, 2645–2650 (2008).

    Google Scholar 

  • 62.

    Balenger, S. L. & Zuk, M. Roaming Romeos: Male crickets evolving in silence show increased locomotor behaviours. Anim. Behav. 101, 213–219 (2015).

    Article  Google Scholar 

  • 63.

    Kopp, M. et al. Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am. Nat. 191, 1–20 (2018).

    PubMed  Article  Google Scholar 

  • 64.

    Ronald, K. L., Fernández-Juricic, E. & Lucas, J. R. Taking the sensory approach: how individual differences in sensory perception can influence mate choice. Anim. Behav. 84, 1283–1294 (2012).

    Article  Google Scholar 

  • 65.

    Bailey, N. W. & Zuk, M. Field crickets change mating preferences using remembered social information. Biol. Lett. 5, 449–451 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Dingemanse, N. J. & Wolf, M. Between-individual differences in behavioural plasticity within populations: causes and consequences. Anim. Behav. 85, 1031–1039 (2013).

    Article  Google Scholar 

  • 67.

    Bailey, N. W., Pascoal, S. & Montealegre, F. Z. Testing the role of trait reversal in evolutionary diversification using song loss in wild crickets. Proc. Natl Acad. Sci. USA 116, 8941–8949 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 68.

    Royauté, R. & Dochtermann, N. A. When the mean no longer matters: developmental diet affects behavioral variation but not population averages in the house cricket (Acheta domesticus). Behav. Ecol. 28, 337–345 (2017).

    Article  Google Scholar 

  • 69.

    Dochtermann, N. A. & Royauté, R. The mean matters: going beyond repeatability to interpret behavioural variation. Anim. Behav. 153, 147–150 (2019).

    Article  Google Scholar 

  • 70.

    Edward, D. A. The description of mate choice. Behav. Ecol. 26, 301–310 (2014).

    Article  Google Scholar 

  • 71.

    Xu, M. & Shaw, K. L. Genetic coupling of signal and preference facilitates sexual isolation during rapid speciation. Proc. R. Soc. Lond. B 286 https://doi.org/10.1098/rspb.2019.1607 (2019).

  • 72.

    Pascoal, S. et al. Sexual selection and population divergence I: the influence of socially flexible cuticular hydrocarbon expression in male field crickets (Teleogryllus oceanicus). Evolution 70, 82–97 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Broder, D. E., Wikle, A. W., Gallagher, J. H. & Tinghitella, R. M. Substrate-borne vibrations in Pacific field cricket courtship displays. J. Orthoptera Res. (Accepted).

  • 74.

    Moran, P. A., Hunt, J., Mitchell, C., Ritchie, M. G. & Bailey, N. W. Sexual selection and population divergence III: Interspecific and intraspecific variation in mating signals. J. Evol. Biol. 33, 990–1005 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    Pollack, G. S., Huber, F. & Weber, T. Frequency and temporal pattern-dependent phonotaxis of crickets (Teleogryllus oceanicus) during tethered flight and compensated walking. J. Comp. Physiol. A 154, 13–26 (1984).

    Article  Google Scholar 

  • 76.

    Thorson, J., Weber, T. & Huber, F. Auditory behavior of the cricket. J. Comp. Physiol. 146, 361–378 (1982).

    Article  Google Scholar 

  • 77.

    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

  • 78.

    Ritchie, M. G. The shape of female mating preferences. Proc. Natl Acad. Sci. U. S. A. 93, 14628–14631 (1996).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Rodríguez, R. L., Hallett, A. C., Kilmer, J. T. & Fowler-Finn, K. D. Curves as traits: genetic and environmental variation in mate preference functions. J. Evol. Biol. 26, 434–442 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Ludecke, D., Makowski, D., Patil, I. & Waggoner, P. easystats/performance: performance 0.4.7 (Version 0.4.7). Zenodo https://doi.org/10.5281/zenodo.3952174 (2020).

  • 81.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. https://doi.org/10.18637/jss.v082.i13 (2017).

  • 82.

    Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B 65, 95–114 (2003).

    MathSciNet  MATH  Article  Google Scholar 

  • 83.

    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. https://doi.org/10.18637/jss.v028.i05 (2008).


  • Source: Ecology - nature.com

    Scientists as engaged citizens

    New fiber optic temperature sensing approach to keep fusion power plants running