Martin, C. H., McGirr, J. A., Richards, E. J. & St John, M. E. How to investigate the origins of novelty: insights gained from genetic, behavioral, and fitness perspectives. Integr. Org. Biol. 1, https://doi.org/10.1093/iob/obz01 (2019).
West-Eberhard, M. J. Sexual selection, social competition, and speciation. Q. Rev. Biol. 80, 47–53 (1983).
Ritchie, M. G. Sexual selection and speciation. Annu. Rev. Ecol. Evol. Syst. 179, 2091–2112 (2007).
Rosenthal, G. G. Mate Choice: The Evolution of Sexual Decision Making from Microbes to Humans (Princeton University Press, 2017).
Servedio, M. R. & Boughman, J. W. The role of sexual selection in local adaptation and speciation. Annu. Rev. Ecol. Evol. Syst. 48, 85–109 (2017).
Svensson, E. I. & Gosden, T. P. Contemporary evolution of secondary sexual traits in the wild. Funct. Ecol. 21, 422–433 (2007).
Svensson, E. I. Eco-evolutionary dynamics of sexual selection and sexual conflict. Funct. Ecol. 33, 66–72 (2019).
Tinghitella, R. M. Rapid evolutionary change in a sexual signal: genetic control of the mutation ‘flatwing’ that renders male field crickets (Teleogryllus oceanicus) mute. Heredity 100, 261–267 (2008).
Lassance, J. M. & Löfstedt, C. Chemical communication: a jewel sheds light on signal evolution. Curr. Biol. 23, 739–834 (2013).
Niehuis, O. et al. Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones. Nature 494, 345–348 (2013).
Ryan, M. J. & Rand, A. S. Sexual selection and signal evolution: the ghost of biases past. Philos. Trans. R. Soc. B 340, 187–195 (1993).
Ryan, M. J. & Rand, A. S. Female responses to ancestral advertisement calls in túngara frogs. Science 269, 390–392 (1995).
Ryan, M. J. & Cummings, M. E. Perceptual biases and mate choice. Annu. Rev. Ecol. Evol. Syst. 44, 437–459 (2013).
Bush, S. L. & Schul, J. Evolution of novel signal traits in the absence of female preferences in Neoconocephalus katydids (Orthoptera, Tettigoniidae). PLoS ONE 5, https://doi.org/10.1371/journal.pone.0012457 (2010).
Kolm, N., Amcoff, M., Mann, R. P. & Arnqvist, G. Diversification of a food-mimicking male ornament via sensory drive. Curr. Biol. 22, 1440–1443 (2012).
Espmark, Y., Amundsen, T. & Rosenqvist, G. Animal Signals: Signalling and Signal Design in Animal Communication (Tapir Academic Press, 2000).
Pfaus, J. G., Erickson, K. A. & Talianakis, S. Somatosensory conditioning of sexual arousal and copulatory behavior in the male rat: a model of fetish development. Physiol. Behav. 122, 1–7 (2013).
Cetinkaya, H. & Domjan, M. Sexual fetishism in a quail (Coturnix japonica) model system: test of reproductive success. J. Comp. Psychol. 120, 427–432 (2006).
Arak, A. & Enquist, M. Hidden preferences and the evolution of signals. Philos. Trans. R. Soc. B 340, 207–213 (1993).
Burley, N. T. & Symanski, R. ‘A taste for the beautiful’: latent aesthetic mate preferences for white crests in two species of australian grassfinches. Am. Nat. 152, 792–802 (1998).
Ryan, M. J. Sexual selection, receiver biases, and the evolution of sex differences. Science 281, 1999–2003 (1998).
Ryan, M. J., Bernal, X. E. & Stanley Rand, A. Female mate choice and the potential for ornament evolution in túngara frogs Physalaemus pustulosus. Curr. Zool. 56, 343–357 (2010).
Reichert, M. S., Finck, J. & Ronacher, B. Exploring the hidden landscape of female preferences for complex signals. Evolution 71, 1009–1024 (2017).
Ryan, M. J., Fox, J. H., Wilczynski, W. & Rand, A. S. Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature 343, 66–67 (1990).
Moehring, A. J. & Boughman, J. W. Veiled preferences and cryptic female choice could underlie the origin of novel sexual traits. Biol. Lett. 15, 20180878 (2019).
Zuk, M. & Kolluru, G. R. Exploitation of sexual signals by predators and parasitoids. Q. Rev. Biol. 43, 415–438 (1998).
Endler, J. A. Natural selection on color patterns in Poecilia reticulata. Evolution 34, 76–91 (1980).
Gray, D. A. & Cade, W. H. Sex, death and genetic variation: Natural and sexual selection on cricket song. Proc. R. Soc. Lond. B 266, 707–709 (1999).
Rand, A. S. & Ryan, M. J. The adaptive significance of a complex vocal repertoire in a neotropical frog. Z. Tierpsychol. 57, 209–214 (1981).
Lewkiewicz, D. A. & Zuk, M. Latency to resume calling after disturbance in the field cricket, Teleogryllus oceanicus, corresponds to population-level differences in parasitism risk. Behav. Ecol. Sociobiol. 55, 569–573 (2004).
Tinghitella, R. M., Zuk, M., Beveridge, M. & Simmons, L. W. Island hopping introduces Polynesian field crickets to novel environments, genetic bottlenecks and rapid evolution. J. Evol. Biol. 24, 1199–1211 (2011).
Zhang, X. et al. Rapid parallel adaptation despite gene flow in silent crickets. Nat. Commun. https://doi.org/10.1038/s41467-020-20263-4 (2021).
Bennet-Clark, H. C. Songs and the physics of sound production in Cricket Behavior and Neurobiology (eds Huber, F., Moore, T. E. & Werner, L.) 227–261 (Cornell University Press, New York, 1989).
Bennet-Clark, H. C. Wing resonances in the Australian field cricket Teleogryllus oceanicus. J. Exp. Biol. 206, 1479–1496 (2003).
Zuk, M., Rotenberry, J. T. & Tinghitella, R. M. Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biol. Lett. 2, 521–524 (2006).
Pascoal, S. et al. Rapid convergent evolution in wild crickets. Curr. Biol. 24, 1369–1374 (2014).
Eldredge, L. G. & Evenhuis, N. L. Hawaii’s biodiversity: a detailed assessment of the numbers of species in the Hawaiian Islands. Bish. Mus. Occ. Pap. 76, 1–28 (2003).
Lehmann, G. U. C. Review of biogeography, host range and evolution of acoustic hunting in Ormiini (insecta, diptera, tachinidae), parasitoids of night-calling bushcrickets and crickets (insecta, orthoptera, ensifera). Zool. Anz. 242, 107–120 (2003).
Zuk, M., Simmons, L. W. & Cupp, L. Calling characteristics of parasitized and unparasitized populations of the field cricket Teleogryllus oceanicus. Behav. Ecol. Sociobiol. 33, 339–343 (1993).
Tinghitella, R. M. & Zuk, M. Asymmetric mating preferences accommodated the rapid evolutionary loss of a sexual signal. Evolution 63, 2087–2098 (2009).
Tinghitella, R. M., Broder, E. D., Gurule-Small, G. A., Hallagan, C. J. & Wilson, J. D. Purring crickets: the evolution of a novel sexual signal. Am. Nat. 192, 773–782 (2018).
Zuk, M., Bailey, N. W., Gray, B. & Rotenberry, J. T. Sexual signal loss: the link between behaviour and rapid evolutionary dynamics in a field cricket. J. Anim. Ecol. 87, 623–633 (2018).
Pascoal, S. et al. Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild. Evol. Lett. 4, 19–33 (2020).
Rayner, J. G., Aldridge, S., Montealegre-Z, F. & Bailey, N. W. A silent orchestra: convergent song loss in Hawaiian crickets is repeated, morphologically varied, and widespread. Ecology 100, https://doi.org/10.1002/ecy.2694 (2019).
Rotenberry, J. T., Zuk, M., Simmons, L. W. & Hayes, C. Phonotactic parasitoids and cricket song structure: an evaluation of alternative hypotheses. Evol. Ecol. 10, 233–243 (1996).
Moiseff, A., Pollack, G. S. & Hoy, R. R. Steering responses of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc. Natl Acad. Sci. USA 75, 4052–4056 (1978).
Hoy, R. R., Pollack, G. S. & Moiseff, A. Species-recognition in the field cricket, Teleogryllus oceanicus: behavioral and neural mechanisms. Integr. Comp. Biol. 22, 597–607 (1982).
Bailey, N. W., Moran, P. A. & Hennig, R. M. Divergent mechanisms of acoustic mate recognition between closely related field cricket species (Teleogryllus spp.). Anim. Behav. 130, 17–25 (2017).
Ryan, M. J. Sexual selection, sensory systems and sensory exploitation in Oxford Surveys. In Evolutionary Biology (eds Antonovics, J. & Futuyma, D. J.) 157–195 (Oxford University Press, Oxford, 1990).
Imaizumi, K. & Pollack, G. S. Neural coding of sound frequency by cricket auditory receptors. J. Neurosci. 19, 1508–1516 (1999).
Oshinsky, M. L. & Hoy, R. R. Physiology of the auditory afferents in an acoustic parasitoid fly. J. Neurosci. 22, 7254–7263 (2002).
Farr, J. A. Male rarity or novelty, female choice behavior, and sexual selection in the guppy, Poecilia reticulata Peters (Pisces: Poeciliidae). Evolution 31, 162–168 (1977).
Jennions, M. D. & Petrie, M. Variation in mate choice and mating preferences: a review of causes and consequences. Biol. Rev. Camb. Philos. Soc. 72, 283–327 (1997).
Brooks, R. & Endler, J. A. Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection. Evolution 55, 1644–1655 (2001).
Fowler-Finn, K. D. & Rodríguez, R. L. Repeatability of mate preference functions in Enchenopa treehoppers (Hemiptera: Membracidae). Anim. Behav. 85, 493–499 (2013).
Kilmer, J. T. et al. Describing mate preference functions and other function-valued traits. J. Evol. Biol. 30, 1658–1673 (2017).
Walker, T. J. A live trap for monitoring Euphasiopteryx and tests with E. ochracea (Diptera: Tachinidae). Fla. Entomol. 72, 314–319 (1989).
Mason, A. C., Oshinsky, M. L. & Hoy, R. R. Hyperacute directional hearing in a microscale auditory system. Nature 410, 686–690 (2001).
Gray, D. A., Kunerth, H. D., Zuk, M., Cade, W. H. & Balenger, S. L. Molecular biogeography and host relations of a parasitoid fly. Ecol. Evol. 9, 11476–11493 (2019).
Paur, J. & Gray, D. A. Individual consistency, learning and memory in a parasitoid fly, Ormia ochracea. Anim. Behav. 82, 825–830 (2011).
Bailey, N. W. & Zuk, M. Acoustic experience shapes female mate choice in field crickets. Proc. R. Soc. Lond. B 275, 2645–2650 (2008).
Balenger, S. L. & Zuk, M. Roaming Romeos: Male crickets evolving in silence show increased locomotor behaviours. Anim. Behav. 101, 213–219 (2015).
Kopp, M. et al. Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am. Nat. 191, 1–20 (2018).
Ronald, K. L., Fernández-Juricic, E. & Lucas, J. R. Taking the sensory approach: how individual differences in sensory perception can influence mate choice. Anim. Behav. 84, 1283–1294 (2012).
Bailey, N. W. & Zuk, M. Field crickets change mating preferences using remembered social information. Biol. Lett. 5, 449–451 (2009).
Dingemanse, N. J. & Wolf, M. Between-individual differences in behavioural plasticity within populations: causes and consequences. Anim. Behav. 85, 1031–1039 (2013).
Bailey, N. W., Pascoal, S. & Montealegre, F. Z. Testing the role of trait reversal in evolutionary diversification using song loss in wild crickets. Proc. Natl Acad. Sci. USA 116, 8941–8949 (2019).
Royauté, R. & Dochtermann, N. A. When the mean no longer matters: developmental diet affects behavioral variation but not population averages in the house cricket (Acheta domesticus). Behav. Ecol. 28, 337–345 (2017).
Dochtermann, N. A. & Royauté, R. The mean matters: going beyond repeatability to interpret behavioural variation. Anim. Behav. 153, 147–150 (2019).
Edward, D. A. The description of mate choice. Behav. Ecol. 26, 301–310 (2014).
Xu, M. & Shaw, K. L. Genetic coupling of signal and preference facilitates sexual isolation during rapid speciation. Proc. R. Soc. Lond. B 286 https://doi.org/10.1098/rspb.2019.1607 (2019).
Pascoal, S. et al. Sexual selection and population divergence I: the influence of socially flexible cuticular hydrocarbon expression in male field crickets (Teleogryllus oceanicus). Evolution 70, 82–97 (2016).
Broder, D. E., Wikle, A. W., Gallagher, J. H. & Tinghitella, R. M. Substrate-borne vibrations in Pacific field cricket courtship displays. J. Orthoptera Res. (Accepted).
Moran, P. A., Hunt, J., Mitchell, C., Ritchie, M. G. & Bailey, N. W. Sexual selection and population divergence III: Interspecific and intraspecific variation in mating signals. J. Evol. Biol. 33, 990–1005 (2020).
Pollack, G. S., Huber, F. & Weber, T. Frequency and temporal pattern-dependent phonotaxis of crickets (Teleogryllus oceanicus) during tethered flight and compensated walking. J. Comp. Physiol. A 154, 13–26 (1984).
Thorson, J., Weber, T. & Huber, F. Auditory behavior of the cricket. J. Comp. Physiol. 146, 361–378 (1982).
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
Ritchie, M. G. The shape of female mating preferences. Proc. Natl Acad. Sci. U. S. A. 93, 14628–14631 (1996).
Rodríguez, R. L., Hallett, A. C., Kilmer, J. T. & Fowler-Finn, K. D. Curves as traits: genetic and environmental variation in mate preference functions. J. Evol. Biol. 26, 434–442 (2013).
Ludecke, D., Makowski, D., Patil, I. & Waggoner, P. easystats/performance: performance 0.4.7 (Version 0.4.7). Zenodo https://doi.org/10.5281/zenodo.3952174 (2020).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. https://doi.org/10.18637/jss.v082.i13 (2017).
Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B 65, 95–114 (2003).
Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. https://doi.org/10.18637/jss.v028.i05 (2008).
Source: Ecology - nature.com