in

High probability of yield gain through conservation agriculture in dry regions for major staple crops

  • 1.

    Pittelkow, C. M. et al. When does no-till yield more? A global meta-analysis. Field Crops Res. 183, 156–168 (2015).

    Article  Google Scholar 

  • 2.

    Food and Agriculture Organization of the United Nations (FAO). Save and Grow: A Policymaker’s Guide to the Sustainable Intensification of Smallholder Crop Production (2013). http://www.fao.org/3/a-i2215e.pdf.

  • 3.

    Michler, J. D., Baylis, K., Arends-Kuenning, M. & Mazvimavi, K. Conservation agriculture and climate resilience. J. Environ. Econom. Manage. 93, 148–169 (2019).

    Article  Google Scholar 

  • 4.

    Page, K. L., Dang, Y. P. & Dalal, R. C. The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2020.00031 (2020).

    Article  Google Scholar 

  • 5.

    Farooq, M. & Siddique, K. H. M. Conservation Agriculture (Springer, Berlin, 2015).

    Google Scholar 

  • 6.

    Holland, J. M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 103, 1–25 (2004).

    Article  Google Scholar 

  • 7.

    Govaerts, B. et al. Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil Tillage Res. 94, 209–219 (2007).

    Article  Google Scholar 

  • 8.

    Zhang, W., Zheng, C., Song, Z., Deng, A. & He, Z. Farming systems in China: Innovations for sustainable crop production. In Crop Physiology (eds Zhang, W. et al.) 43–64 (Elsevier, Amsterdam, 2015).

    Google Scholar 

  • 9.

    Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Scopel, E. et al. Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agron. Sustain. Dev. 33, 113–130 (2013).

    Article  Google Scholar 

  • 11.

    Steward, P. R. et al. The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: A meta-regression of yields. Agric. Ecosyst. Environ. 251, 194–202 (2018).

    Article  Google Scholar 

  • 12.

    Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 1–9 (2018).

    CAS  Article  Google Scholar 

  • 13.

    Laborde, J. P., Wortmann, C. S., Blanco-Canqui, H., Baigorria, G. A. & Lindquist, J. L. Identifying the drivers and predicting the outcome of conservation agriculture globally. Agric. Syst. 177, 102692. https://doi.org/10.1016/j.agsy.2019.102692 (2020).

    Article  Google Scholar 

  • 14.

    Su, Y., Gabrielle, B. & Makowski, D. A global dataset for crop production under conventional tillage and no tillage practice. Figshare. https://doi.org/10.6084/m9.figshare.12155553 (2020).

    Article  Google Scholar 

  • 15.

    Su, Y., Gabrielle, B. & Makowski, D. A global dataset for crop production under conventional tillage and no tillage systems. Sci. Data 8, 33. https://doi.org/10.1038/s41597-021-00817-x (2021).

    Article  PubMed  Google Scholar 

  • 16.

    Food and Agriculture Organization of the United Nations (FAO). Conservation Agriculture (2020). http://www.fao.org/conservation-agriculture/en/.

  • 17.

    Ho, T. K. Random decision forests. In Proc. 3rd International Conference on Document Analysis and Recognition, 278–282 (1995).

  • 18.

    Meinshausen, N. Quantile regression forests. J. Mach. Learn. Res. 7, 983–999 (2006).

    MathSciNet  MATH  Google Scholar 

  • 19.

    University of Wisconsin-Madison. Crop Calendar Dataset: netCDF 5 Degree (2020). https://nelson.wisc.edu/sage/data-and-models/crop-calendar-dataset/netCDF0-5degree.php.

  • 20.

    Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).

    Google Scholar 

  • 21.

    University of Tokyo. Soil Texture Map (2020). http://hydro.iis.u-tokyo.ac.jp/~sujan/research/gswp3/soil-texture-map.html.

  • 22.

    NOAA/OAR/ESRL PSL. University of Delaware Air Temperature & Precipitation (2020). https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html.

  • 23.

    Martens, B. et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    ADS  Article  Google Scholar 

  • 24.

    Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).

    ADS  Article  Google Scholar 

  • 25.

    NOAA/OAR/ESRL PSL. CPC Global Daily Temperature (2020). https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html.

  • 26.

    Mandelkern, M. et al. Setting confidence intervals for bounded parameters. Stat. Sci. 17, 149–172 (2002).

    MathSciNet  Article  Google Scholar 

  • 27.

    Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2008GB003435 (2010).

    Article  Google Scholar 

  • 28.

    Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

    MathSciNet  Article  Google Scholar 

  • 29.

    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, New York, 2009).

    Google Scholar 

  • 30.

    Zuazo, V. H. D. & Pleguezuelo, C. R. R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev. 28, 65–86 (2008).

    Article  Google Scholar 

  • 31.

    Shaxson, F. & Barber, R. Optimizing Soil Moisture for Plant Production, the Significance of Soil Porosity (FAO, 2003).

  • 32.

    Swanepoel, C. M. et al. The benefits of conservation agriculture on soil organic carbon and yield in southern Africa are site-specific. Soil Tillage Res. 183, 72–82 (2018).

    Article  Google Scholar 

  • 33.

    Derpsch, R. Controle da Erosão no Paraná, Brasil: Sistemas de Cobertura do Solo, Plantio Direto e Preparo Conservacionista do Solo (GTZ/Curitiba, 1991).

  • 34.

    Scopel, E., da Silva, F. A. M., Corbeels, M., Affholder, F. & Maraux, F. Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 24, 383–395 (2004).

    Article  Google Scholar 

  • 35.

    Thierfelder, C. & Wall, P. C. Investigating conservation agriculture (CA) systems in Zambia and Zimbabwe to mitigate future effects of climate change. J. Crop Improve. 24, 113–121 (2010).

    Article  Google Scholar 

  • 36.

    Lal, R. The role of residues management in sustainable agricultural systems. J. Sustain. Agric. 5, 51–78 (1995).

    Article  Google Scholar 

  • 37.

    Shen, Y., McLaughlin, N., Zhang, X., Xu, M. & Liang, A. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci. Rep. 8, 4500 (2018).

    ADS  Article  Google Scholar 

  • 38.

    Muñoz-Romero, V., Lopez-Bellido, L. & Lopez-Bellido, R. J. Effect of tillage system on soil temperature in a rainfed Mediterranean Vertisol. Int. Agrophys. 29, 467–473 (2015).

    Article  Google Scholar 

  • 39.

    Hatfield, J. L. & Prueger, J. H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extr. 10, 4–10 (2015).

    Article  Google Scholar 

  • 40.

    Ramakrishna, A., Tam, H. M., Wani, S. P. & Long, T. D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res. 95, 115–125 (2006).

    Article  Google Scholar 

  • 41.

    Kumar, S. & Dey, P. Effects of different mulches and irrigation methods on root growth, nutrient uptake, water-use efficiency and yield of strawberry. Sci. Hortic. 127, 318–324 (2011).

    ADS  Article  Google Scholar 

  • 42.

    van Wijk, W. R., Larson, W. E. & Burrows, W. C. Soil Temperature and the early growth of corn from mulched and unmulched soil. Soil Sci. Soc. Am. J. 23, 428 (1959).

    Article  Google Scholar 

  • 43.

    Kodzwa, J. J., Gotosa, J. & Nyamangara, J. Mulching is the most important of the three conservation agriculture principles in increasing crop yield in the short term, under sub humid tropical conditions in Zimbabwe. Soil Tillage Res. 197, 104515 (2020).

    Article  Google Scholar 

  • 44.

    Giller, K. E., Witter, E., Corbeels, M. & Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Res. 114, 23–34 (2009).

    Article  Google Scholar 

  • 45.

    Andersson, J. A. & D’Souza, S. From adoption claims to understanding farmers and contexts: A literature review of conservation agriculture (CA) adoption among smallholder farmers in southern Africa. Agric. Ecosyst. Environ. 187, 116–132 (2014).

    Article  Google Scholar 

  • 46.

    Mashingaidze, N., Madakadze, C., Twomlow, S., Nyamangara, J. & Hove, L. Crop yield and weed growth under conservation agriculture in semi-arid Zimbabwe. Soil Tillage Res. 124, 102–110 (2012).

    Article  Google Scholar 

  • 47.

    Watt, M. S., Whitehead, D., Mason, E. G., Richardson, B. & Kimberley, M. O. The influence of weed competition for light and water on growth and dry matter partitioning of young Pinus radiata, at a dryland site. For. Ecol. Manage. 183, 363–376 (2003).

    Article  Google Scholar 

  • 48.

    Abouziena, H., El-Saeid, M., Ahmed, A. & Amin, E.-S. Water loss by weeds: A review. Int. J. ChemTech Res. 7, 974–4290 (2014).

    Google Scholar 

  • 49.

    Food and Agriculture Organization of the United Nations (FAO). The Economics of Conservation Agriculture (2001).

  • 50.

    Olsson, L. et al. Land Degradation. In Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (IPCC, 2019).


  • Source: Ecology - nature.com

    Reducing inequality across the globe and on campus

    George Shultz PhD ’49, renowned statesman and former professor, dies at 100