in

North Pacific warming shifts the juvenile range of a marine apex predator

  • 1.

    Fuentes, M. M. et al. Adaptive management of marine mega-fauna in a changing climate. Mitig. Adapt. Strat. Glob. Change 21, 209–224 (2016).

    Article  Google Scholar 

  • 2.

    Grose, S. O., Pendleton, L., Leathers, A., Cornish, A. & Waitai, S. Climate change will re-draw the map for marine megafauna and the people who depend on them. Front. Mar. Sci. 7, 547 (2020).

    Article  Google Scholar 

  • 3.

    Halley, J. M., Van Houtan, K. S. & Mantua, N. How survival curves affect populations’ vulnerability to climate change. PLoS ONE 13, e0203124 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Zacharias, M. A. & Roff, J. C. Use of focal species in marine conservation and management: a review and critique. Aquat. Conserv. Mar. Freshw. Ecosyst. 11, 59–76 (2001).

    Article  Google Scholar 

  • 5.

    Hazen, E. L. et al. Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar. Ecol. Prog. Ser. 457, 221–240 (2012).

    ADS  Article  Google Scholar 

  • 6.

    Hazen, E. L. et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Change 3, 234–238 (2013).

    ADS  Article  Google Scholar 

  • 7.

    Jorgensen, S. J. et al. Killer whales redistribute white shark foraging pressure on seals. Sci. Rep. 9, 1–9. https://doi.org/10.1038/s41598-019-39356-2 (2019).

    CAS  Article  Google Scholar 

  • 8.

    Domeier, M. L. Global perspectives on the biology and life history of the white shark (CRC Press, Boca Raton, 2012).

    Google Scholar 

  • 9.

    Bruce, B. D. & Bradford, R. W. Habitat use and spatial dynamics of juvenile white sharks, Carcharodon carcharias, in eastern Australia. Global perspectives on the biology and life history of the white shark, 225–254 (2012).

  • 10.

    Lowe, C. G. et al. Historic fishery interactions with white sharks in the Southern California Bight. Global Perspectives on the Biology and Life History of the White Shark’.(Ed. ML Domeier.) pp, 169–186 (2012).

  • 11.

    Villafaña, J. A. et al. First evidence of a palaeo-nursery area of the great white shark. Sci. Rep. 10, 1–8 (2020).

    Article  CAS  Google Scholar 

  • 12.

    Oñate-González, E. C. et al. Importance of Bahia Sebastian Vizcaino as a nursery area for white sharks (Carcharodon carcharias) in the Northeastern Pacific: a fishery dependent analysis. Fish. Res. 188, 125–137 (2017).

    Article  Google Scholar 

  • 13.

    Klimley, A. P. The areal distribution and autoecology of the white shark, Carcharodon carcharias, off the west coast of North America. Mem. Southern Calif. Acad Sci 9, 15–40 (1985).

    Google Scholar 

  • 14.

    Weng, K. C. et al. Movements, behavior and habitat preferences of juvenile white sharks Carcharodon carcharias in the eastern Pacific. Mar. Ecol. Prog. Ser. 338, 211–224 (2007).

    ADS  Article  Google Scholar 

  • 15.

    White, C. F. et al. Quantifying habitat selection and variability in habitat suitability for juvenile white sharks. PLoS ONE 14, e0214642. https://doi.org/10.1371/journal.pone.0214642 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).

    ADS  Article  Google Scholar 

  • 17.

    Peterson, W. T. et al. The pelagic ecosystem in the Northern California Current off Oregon during the 2014–2016 warm anomalies within the context of the past 20 years. J. Geophys. Res.: Oceans 122, 7267–7290 (2017).

    ADS  Article  Google Scholar 

  • 18.

    Thompson, A. et al. State of the California current: a new anchovy regime and Marine Heatwave? California Cooperative Oceanic Fisheries Investigations Reports. Calif. Cooper. Ocean. Fish. Investig. 60, 1–61 (2019).

    Google Scholar 

  • 19.

    Gentemann, C. L., Fewings, M. R. & García-Reyes, M. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett. 44, 312–319 (2017).

    ADS  Article  Google Scholar 

  • 20.

    Sanford, E., Sones, J. L., García-Reyes, M., Goddard, J. H. & Largier, J. L. Widespread shifts in the coastal biota of northern California during the 2014–2016 marine heatwaves. Sci. Rep. 9, 1–14 (2019).

    ADS  Article  CAS  Google Scholar 

  • 21.

    Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 1–9 (2019).

    Article  CAS  Google Scholar 

  • 22.

    Kohl, W. T., McClure, T. I. & Miner, B. G. Decreased temperature facilitates short-term sea star wasting disease survival in the keystone intertidal sea star Pisaster ochraceus. PLoS ONE 11, e0153670 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Laake, J. L., Lowry, M. S., DeLong, R. L., Melin, S. R. & Carretta, J. V. Population growth and status of California sea lions. J. Wildl. Manag. 82, 583–595 (2018).

    Article  Google Scholar 

  • 24.

    Jones, T. et al. Unusual mortality of Tufted puffins (Fratercula cirrhata) in the eastern Bering Sea. PLoS ONE 14, e0216532 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Savage, K. Alaska and British Columbia large whale unusual mortality event summary report. (2017).

  • 26.

    Gravem, S. A. & Morgan, S. G. Shifts in intertidal zonation and refuge use by prey after mass mortalities of two predators. Ecology 98, 1006–1015 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Cheung, W. W. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 1–10 (2020).

    Article  CAS  Google Scholar 

  • 28.

    Kanive, P. E. et al. Size-specific apparent survival rate estimates of white sharks using mark–recapture models. Can. J. Fish. Aquat. Sci. 76, 2027–2034 (2019).

    Article  Google Scholar 

  • 29.

    California_State_Senate. Budget Act of 2018. Senate Bill 840 2017–2018 (2018).

  • 30.

    Miller-Rushing, A., Primack, R. & Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 10, 285–290 (2012).

    Article  Google Scholar 

  • 31.

    Vianna, G. M., Meekan, M. G., Bornovski, T. H. & Meeuwig, J. J. Acoustic telemetry validates a citizen science approach for monitoring sharks on coral reefs. PLoS ONE 9, e95565 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 32.

    Klimley, A. P., Anderson, S. D., Pyle, P. & Henderson, R. Spatiotemporal patterns of white shark (Carcharodon carcharias) predation at the South Farallon Islands, California. Copeia, 680–690 (1992).

  • 33.

    Fredston-Hermann, A., Selden, R., Pinsky, M., Gaines, S. D. & Halpern, B. S. Cold range edges of marine fishes track climate change better than warm edges. Glob. Change Biol. 26, 2908–2922 (2020).

    ADS  Article  Google Scholar 

  • 34.

    Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Mcclure, M. M. et al. Incorporating climate science in applications of the US Endangered Species Act for aquatic species. Conserv. Biol. 27, 1222–1233 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).

    Article  Google Scholar 

  • 37.

    Cao, J., Thorson, J. T., Punt, A. E. & Szuwalski, C. A novel spatiotemporal stock assessment framework to better address fine-scale species distributions: Development and simulation testing. Fish Fish. 21, 350–367. https://doi.org/10.1111/faf.12433 (2020).

    Article  Google Scholar 

  • 38.

    Dewar, H., Domeier, M. & Nasby-Lucas, N. Insights into young of the year white shark, Carcharodon carcharias, behavior in the Southern California Bight. Environ. Biol. Fishes 70, 133–143 (2004).

    Article  Google Scholar 

  • 39.

    Moxley, J. H., Nicholson, T. E., Van Houtan, K. S. & Jorgensen, S. J. Non-trophic impacts from white sharks complicate population recovery for sea otters. Ecol. Evol. 9, 6378–6388. https://doi.org/10.1002/ece3.5209 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Cury, P. et al. Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603–618 (2000).

    Article  Google Scholar 

  • 41.

    Nicholson, T. E. et al. Gaps in kelp cover may threaten the recovery of California sea otters. Ecography 41, 1751–1762 (2018).

    Article  Google Scholar 

  • 42.

    Kenyon, K. W. The sea otter in the eastern Pacific Ocean. (US Bureau of Sport Fisheries and Wildlife, 1969).

  • 43.

    Tinker, M. T., Hatfield, B. B., Harris, M. D. & Ames, J. A. Dramatic increase in sea otter mortality from white sharks in California. Mar. Mammal Sci. 32, 309–326 (2016).

    Article  Google Scholar 

  • 44.

    Miller, M. A. et al. Predators, disease, and environmental change in the nearshore ecosystem: mortality in Southern Sea Otters (Enhydra lutris nereis) From 1998–2012. Front. Mar. Sci. 7, 582 (2020).

    Article  Google Scholar 

  • 45.

    Estes, J. A. & Palmisano, J. F. Sea otters: their role in structuring nearshore communities. Science 185, 1058–1060 (1974).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 46.

    Hughes, B. B. et al. Recovery of a top predator mediates negative eutrophic effects on seagrass. Proc. Natl. Acad. Sci. USA 110, 15313–15318. https://doi.org/10.1073/pnas.1302805110 (2013).

    ADS  Article  PubMed  Google Scholar 

  • 47.

    Becker, S. L., Nicholson, T. E., Mayer, K. A., Murray, M. J. & Van Houtan, K. S. Environmental Factors May Drive the Post-release Movements of Surrogate-Reared Sea Otters. Frontiers in Marine Science 7, doi:https://doi.org/10.3389/fmars.2020.539904 (2020).

  • 48.

    Mayer, K. A. et al. Surrogate rearing a keystone species to enhance population and ecosystem restoration. Oryx, 1–11 (2019).

  • 49.

    Jorgensen, S. J. et al. Philopatry and migration of Pacific white sharks. Proc. R. Soc. B: Biol. Sci. 277, 679–688 (2010).

    Article  Google Scholar 

  • 50.

    Breaker, L. & Broenkow, W. W. The circulation of Monterey Bay and related processes. Moss Land. Mar. Lab. Tech. Publ. 89, 114 (1989).

    Google Scholar 

  • 51.

    Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536. https://doi.org/10.1038/s41467-019-14215-w (2020).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J. & Heimbach, P. Global reconstruction of historical ocean heat storage and transport. Proc. Natl. Acad. Sci. 116, 1126–1131 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Gaines, S. D. & Denny, M. W. The largest, smallest, highest, lowest, longest, and shortest: extremes in ecology. Ecology 74, 1677–1692 (1993).

    Article  Google Scholar 

  • 54.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    ADS  Article  Google Scholar 

  • 55.

    Oliver, E. C. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).

    CAS  Article  Google Scholar 

  • 56.

    Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).

    Article  Google Scholar 

  • 57.

    McCauley, D. J., DeSalles, P. A., Young, H. S., Gardner, J. P. & Micheli, F. Use of high-resolution acoustic cameras to study reef shark behavioral ecology. J. Exp. Mar. Biol. Ecol. 482, 128–133 (2016).

    Article  Google Scholar 

  • 58.

    Ward-Paige, C. A. & Worm, B. Global evaluation of shark sanctuaries. Global Environ. Change 47, 174–189 (2017).

    Article  Google Scholar 

  • 59.

    Van Houtan, K. S. et al. Coastal sharks supply the global shark fin trade. Biol. Let. 16, 20200609 (2020).

    Article  CAS  Google Scholar 

  • 60.

    Benson, J. F. et al. Juvenile survival, competing risks, and spatial variation in mortality risk of a marine apex predator. J. Appl. Ecol. 55, 2888–2897 (2018).

    Article  Google Scholar 

  • 61.

    Cleveland, W. S. & Devlin, S. J. Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988).

    MATH  Article  Google Scholar 

  • 62.

    Beck, J., Ballesteros-Mejia, L., Nagel, P. & Kitching, I. J. Online solutions and the ‘W allacean shortfall’: what does GBIF contribute to our knowledge of species’ ranges?. Divers. Distrib. 19, 1043–1050 (2013).

    Article  Google Scholar 

  • 63.

    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).

    Article  Google Scholar 

  • 64.

    Van Horn, G. et al. in Proceedings of the IEEE conference on computer vision and pattern recognition. 8769–8778.

  • 65.

    Teo, S. L. et al. Validation of geolocation estimates based on light level and sea surface temperature from electronic tags. Mar. Ecol. Prog. Ser. 283, 81–98 (2004).

    ADS  Article  Google Scholar 

  • 66.

    Handcock, M. S. Package ‘reldist’. (2016).

  • 67.

    Reynolds, R. & Banzon, V. NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) Analysis, Version 2. NOAA National Centers for Environmental Information. 10, V5SQ8XB5 (2008).

  • 68.

    Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. (2016).

  • 69.

    Lyons, K. et al. The degree and result of gillnet fishery interactions with juvenile white sharks in southern California assessed by fishery-independent and-dependent methods. Fish. Res. 147, 370–380 (2013).

    ADS  Article  Google Scholar 

  • 70.

    Mayer, L. et al. The Nippon Foundation—GEBCO seabed 2030 project: The quest to see the world’s oceans completely mapped by 2030. Geosciences 8, 63 (2018).

    ADS  Article  Google Scholar 

  • 71.

    Tanaka, K. R. et al. Mesoscale climatic impacts on the distribution of Homarus americanus in the US inshore Gulf of Maine. Can. J. Fish. Aquat. Sci. 76, 608–625 (2019).

    Article  Google Scholar 

  • 72.

    R_Core_Team. (Vienna, Austria, 2019).


  • Source: Ecology - nature.com

    George Shultz PhD ’49, renowned statesman and former professor, dies at 100

    Descriptive multi-agent epidemiology via molecular screening on Atlantic salmon farms in the northeast Pacific Ocean