Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).
Dietl, G. P. et al. Conservation paleobiology: Leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43, 79–103 (2015).
Rick, T. C. & Lockwood, R. Integrating paleobiology, archeology, and history to inform biological conservation. Conserv. Biol. 27, 45–54 (2013).
Dietl, G. P. Brave new world of conservation paleobiology. Front. Ecol. Evol. 4, 21 (2016).
Tóth, A. B. et al. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science 365, 1305–1308 (2019).
Lyons, S. K. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2016).
Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).
Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B Biol. Sci. 281, 20133254 (2014).
Faurby, S., Silvestro, D., Werdelin, L. & Antonelli, A. Brain expansion in early hominins predicts carnivore extinctions in East Africa. Ecol. Lett. 23, 537–544 (2020).
Van Der Kaars, S. et al. Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nat. Commun. 8, 1–7 (2017).
Yeakel, J. D. et al. Collapse of an ecological network in Ancient Egypt. Proc. Natl. Acad. Sci. U. S. A. 111, 14472–14477 (2014).
Tsahar, E., Izhaki, I., Lev-Yadun, S. & Bar-Oz, G. Distribution and Extinction Of Ungulates During The Holocene of the Southern Levant. PLoS ONE 4, e5316 (2009).
Boivin, N. L. et al. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. Proc. Natl. Acad. Sci. U. S. A. 113, 6388–16396 (2016).
Jęodrzejewska, B., Jęodrzejewski, W., Bunevich, A. N., Minkowski, L. & Okarma, H. Population dynamics of Wolves Canis lupus in Bialowieża Primeval Forest (Poland and Belarus) in relation to hunting by humans, 1847–1993. Mamm. Rev. 26, 103–126 (1996).
Orbach, M. & Yeshurun, R. The hunters or the hunters: Human and hyena prey choice divergence in the Late Pleistocene Levant. J. Hum. Evol. 102572 (2019).
Werdelin, L. & Lewis, M. E. Temporal change in functional richness and evenness in the eastern African Plio-Pleistocene carnivoran guild. PLoS ONE 8, e57944 (2013).
Albrecht, J. et al. Humans and climate change drove the Holocene decline of the brown bear. Sci. Rep. 7, 10399 (2017).
Dayan, T. Carnivore diversity in the late quaternary of Israel. Quat. Res. 41, 343–349 (1994).
Price, G. J., Louys, J., Faith, J. T., Lorenzen, E. & Westaway, M. C. Big data little help in megafauna mysteries. Nature 558, 23–25 (2018).
Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).
Mittelbach, G. G. & McGill, B. J. Community Ecology (Oxford University Press, Oxford, 2019).
Hebblewhite, M. et al. Human activity mediates a trophic cascade caused by wolves. Ecology 86, 2135–2144 (2005).
Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
Hoeks, S. et al. Mechanistic insights into the role of large carnivores for ecosystem structure and functioning. Ecography 283, 3 (2020).
Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
Mendelssohn, H. & Yom-Tov, Y. Mammalia of Israel. 476 (Israel Academy of Sciences and Humanities, 1999).
Hadas, G. Ancient agricultural irrigation systems in the oasis of Ein Gedi, Dead Sea, Israel. J. Arid Environ. 86, 75–81 (2012).
Bar-Matthews, M., Ayalon, A., Kaufman, A. & Wasserburg, G. J. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth Planet. Sci. Lett. 166, 85–95 (1999).
Litt, T., Ohlwein, C., Neumann, F. H. & Hense, A. Holocene climate variability in the Levant from the Dead Sea pollen record. Quat. Sci. Rev. 49, 95–105 (2012).
Vaks, A., Bar-Matthews, M., Ayalon, A. & Matthews, A. Paleoclimate and location of the border between Mediterranean climate region and the Saharo-Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth Planet. Sci. Lett. 249, 384–399 (2006).
Frumkin, A. & Elitzur, Y. Historic Dead Sea level fluctuations calibrated with geological and archaeological evidence. Quat. Res. 57, 334–342 (2002).
Lisker, S. et al. Late Quaternary environmental and human events at En Gedi, reflected by the geology and archaeology of the Moringa Cave (Dead Sea area, Israel). Quat. Res. 68, 203–212 (2007).
Frumkin, A., Langford, B. & Porat, R. The Judean Desert—The major hypogene cave region of the Southern Levant. In Hypogene Karst Regions and Caves of the World (eds Klimchouk, A. et al.) 463–477 (Springer, Berlin, 2017).
Frumkin, A., Zaidner, Y., Na’aman, I., Tsatskin, A. & Porat, N. Sagging and collapse sinkholes over hypogenic hydrothermal karst in a carbonate terrain. Geomorphology 229, 45–57 (2015).
Davidovich, U. The Chalcolithic—Early bronze age transition: A view from the Judean Desert Caves, Southern Levant. Paléorient 39, 125–138 (2013).
Rick, J. W. Dates as data: An examination of the Peruvian preceramic radiocarbon record. Am. Antiq. 52, 55–73 (1987).
Jacobson, A. P. et al. Leopard (Panthera pardus) status, distribution, and the research efforts across its range. PeerJ 4, e1974 (2016).
Shamoon, H. & Shapira, I. Limiting factors of Striped Hyaena, Hyaena hyaena, distribution and densities across climatic and geographical gradients (Mammalia: Carnivora). Zool. Middle East 65, 189–200 (2019).
Yirga, G. et al. Spotted hyena (Crocuta crocuta) concentrate around urban waste dumps across Tigray, northern Ethiopia. Wildl. Res. 42, 563–569 (2016).
Davidovich, U. The Judean Desert during the Chalcolithic, Bronze and Iron Ages (Sixth-First Millennia BC): Desert and Sown Relations in light of Activity Patterns in a Defined Desert Environment (The Hebrew University, Jerusalem, 2014).
Geffen, E., Hefner, R., MacDonald, D. W. & Ucko, M. Diet and Foraging Behavior of Blanford’s Foxes, Vulpes cana, Israel. J. Mammal. 73, 395–402 (1992).
Tchernov, E. The Middle Paleolithic mammalian sequence and its bearing on the origin of Homo sapiens in the southern Levant. in Investigations in South Levantine Prehistory (eds. Bar-Yosef, 0. & Vandermeersch, B.) 25–42 (BAR, International Series 497, 1989).
Garfinkel, Y. et al. Pottery Neolithic Site in the Southern Coastal Plain of Israel, A final report. J. Israel Prehist. Soc. 32, 73–145 (2002).
Tichon, J., Rotem, G. & Ward, P. Estimating abundance of striped hyenas (Hyaena hyaena) in the Negev Desert of Israel using camera traps and closed capture–recapture models. Eur. J. Wildl. Res. 63, 5 (2016).
Perez, I., Geffen, E. & Mokady, O. Critically Endangered Arabian leopards Panthera pardus nimr in Israel: estimating population parameters using molecular scatology. Oryx 40, 295–301 (2006).
Avner, U. et al. Carnivore traps in the Negev and Judaean deserts (Israel): function, location and chronology. in Prédateurs dans tous leurs états: évolution, biodiversité, interactions, mythes, symboles. Actes des XXXIe rencontres internationales d’archéologie et d’histoire d’Antibes, 21–23 octobre 2010 (eds. Brugal, J. P., Gardeisen, A. & Zucker, A.) 253–268 (2011).
Hadas, G. Hunting Traps around the Oasis of ʿEn Gedi. Israel Explor. J. 61, 2–11 (2011).
Torfstein, A., Goldstein, S. L., Stein, M. & Enzel, Y. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quat. Sci. Rev. 69, 1–7 (2013).
Torfstein, A. et al. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth Planet. Sci. Lett. 412, 235–244 (2015).
Lisker, S., Vaks, A., Bar-Matthews, M., Porat, R. & Frumkin, A. Late Pleistocene palaeoclimatic and palaeoenvironmental reconstruction of the Dead Sea area (Israel), based on speleothems and cave stromatolites. Quat. Sci. Rev. 29, 1201–1211 (2010).
Frumkin, A. & Comay, O. The last glacial cycle of the southern Levant: Paleoenvironment and chronology of modern humans. J. Hum. Evol. https://doi.org/10.1016/j.jhevol.2019.04.007 (2019).
Orland, I. J. et al. Seasonal resolution of Eastern Mediterranean climate change since 34ka from a Soreq Cave speleothem. Geochim. Cosmochim. Acta 89, 240–255 (2012).
Bar-Matthews, M. & Ayalon, A. Speleothems as palaeoclimate indicators, a case study from Soreq Cave located in the Eastern Mediterranean Region, Israel. In Past Climate Variability Through Europe and Africa (eds Battarbee, R. W. et al.) 363–391 (Springer, Berlin, 2004).
Frumkin, A., Kadan, G., Enzel, Y. & Eyal, Y. Radiocarbon chronology of the Holocene Dead Sea: Attempting a regional correlation. Radiocarbon 43, 1179–1189 (2001).
Morin, E., Ryb, T., Gavrieli, I. & Enzel, Y. Mean, variance, and trends of Levant precipitation over the past 4500 years from reconstructed Dead Sea levels and stochastic modeling. Quat. Res. 91, 751–767 (2019).
Enzel, Y. et al. Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quat. Res. 60, 263–273 (2003).
Bookman, R., Enzel, Y., Agnon, A. & Stein, M. Late Holocene lake levels of the Dead Sea. GSA Bull. 116, 555–571 (2004).
Kagan, E. J., Langgut, D., Boaretto, E., Neumann, F. H. & Stein, M. Dead Sea levels during the Bronze and Iron ages. Radiocarbon 57, 237–252 (2015).
Vaks, A. et al. Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel. Quat. Res. 59, 182–193 (2003).
Frumkin, A., Ford, D. C. & Schwarcz, H. P. Continental oxygen isotopic record of the last 170,000 years in Jerusalem. Quat. Res. 51, 317–327 (1999).
Kolodny, Y., Stein, M. & Machlus, M. Sea-rain-lake relation in the Last Glacial East Mediterranean revealed by δ18O-δ13C in Lake Lisan aragonites. Geochim. Cosmochim. Acta 69, 4045–4060 (2005).
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. & Hawkesworth, C. J. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim. Cosmochim. Acta 67, 3181–3199 (2003).
Greenbaum, N., Ben-Zvi, A., Haviv, I. & Enzel, Y. The hydrology and paleohydrology of the Dead Sea tributaries. Geol. Soc. Am. Spec. Publ. 401, 63–93 (2006).
Enzel, Y. et al. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Glob. Planet. Change 60, 165–192 (2008).
Petraglia, M. D., Groucutt, H. S., Guagnin, M., Breeze, P. S. & Boivin, N. Human responses to climate and ecosystem change in ancient Arabia. Proc. Natl. Acad. Sci. U. S. A. 117, 8263–8270 (2020).
Frumkin, A. Holy Land Atlas: Judean Desert Caves (Magnes Press, Jerusalem, 2015).
Klein, E., Davidovich Uri, Porat, R., Ganor, A. & Ullman, M. In the Cave of the Skulls-Again. Biblic. Archaeol. Rev. 43, 18–19 and 57 (2017).
Cherkinsky, A. Can we get a good radiocarbon age from “bad bone”? Determining the reliability of radiocarbon age from bioapatite. Radiocarbon 51, 647–655 (2009).
Zazzo, A. & Saliège, J. F. Radiocarbon dating of biological apatites: A review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 52–61 (2011).
Ramsey, C. B. Deposition models for chronological records. Quat. Sci. Rev. 27, 42–60 (2008).
Bevan, A., Crema, E. & Silva, F. rcarbon: Calibration and Analysis of Radiocarbon Dates. R package version 1 (2017).
Source: Ecology - nature.com