in

A forest loss report card for the world’s protected areas

  • 1.

    Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    De Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010).

    Article  Google Scholar 

  • 3.

    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Protected Planet Report 2016 (UNEP-WCMC and IUCN, 2016).

  • 5.

    Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).

    Article  Google Scholar 

  • 8.

    The State of the World’s Forests 2020 (FAO and UNEP, 2020).

  • 9.

    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Coetzee, B. W., Gaston, K. J. & Chown, S. L. Local scale comparisons of biodiversity as a test for global protected area ecological performance: a meta-analysis. PLoS ONE 9, e105824 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Article  Google Scholar 

  • 14.

    Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Spracklen, B., Kalamandeen, M., Galbraith, D., Gloor, E. & Spracklen, D. V. A global analysis of deforestation in moist tropical forest protected areas. PLoS ONE 10, e0143886 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Ewers, R. M. & Rodrigues, A. S. Estimates of reserve effectiveness are confounded by leakage. Trends Ecol. Evol. 23, 113–116 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Fuller, C., Ondei, S., Brook, B. W. & Buettel, J. C. First, do no harm: a systematic review of deforestation spillovers from protected areas. Glob. Ecol. Conserv. 18, e00591 (2019).

    Article  Google Scholar 

  • 20.

    Stolton, S. et al. in Protected Area Governance and Management (eds Worboys, G. L. et al.) 145–168 (ANU Press, 2015).

  • 21.

    Scharlemann, J. P. et al. Securing tropical forest carbon: the contribution of protected areas to REDD. Oryx 44, 352–357 (2010).

    Article  Google Scholar 

  • 22.

    Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).

    Article  Google Scholar 

  • 24.

    Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Leader-Williams, N. & Albon, S. Allocation of resources for conservation. Nature 336, 533–535 (1988).

    Article  Google Scholar 

  • 26.

    Jachmann, H. Monitoring law-enforcement performance in nine protected areas in Ghana. Biol. Conserv. 141, 89–99 (2008).

    Article  Google Scholar 

  • 27.

    Critchlow, R. et al. Improving law-enforcement effectiveness and efficiency in protected areas using ranger-collected monitoring data. Conserv. Lett. 10, 572–580 (2017).

    Article  Google Scholar 

  • 28.

    Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).

    Article  Google Scholar 

  • 29.

    Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl Acad. Sci. USA 110, 12144–12148 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Watson, J. E., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Bruner, A. G., Gullison, R. E. & Balmford, A. Financial costs and shortfalls of managing and expanding protected-area systems in developing countries. BioScience 54, 1119–1126 (2004).

    Article  Google Scholar 

  • 32.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

  • 33.

    Report of the Conference of the Parties on its Sixteenth Session, held in Cancun from 29 November to 10 December 2010. Addendum. Part Two: Action Taken by the Conference of the Parties at its Sixteenth Session Report FCCC/CP/2010/7/Add.1 (UNFCCC, 2011).

  • 34.

    Fletcher, R., Dressler, W., Büscher, B. & Anderson, Z. R. Questioning REDD+ and the future of market-based conservation. Conserv. Biol. 30, 673–675 (2016).

    PubMed  Article  Google Scholar 

  • 35.

    Ministerio de Ambiente y Desarrollo Sostenible, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt Política Nacional para la Gestión Integral de la Biodiversidad y Sus Servicios Ecosistémicos (MADS, 2012).

  • 36.

    Sims, K. R. E. & Alix-Garcia, J. M. Parks versus PES: evaluating direct and incentive-based land conservation in Mexico. J. Environ. Econ. Manag. 86, 8–28 (2017).

    Article  Google Scholar 

  • 37.

    James, A. N., Green, M. J. B. & Paine, J. R. A Global Review of Protected Area Budgets and Staff WCMC Biodiversity Series No.10 (World Conservation Press, 1999).

  • 38.

    Walker, S., Price, R., Rutledge, D., Stephens, R. T. & Lee, W. G. Recent loss of indigenous cover in New Zealand. New Zeal. J. Ecol. 30, 169–177 (2006).

    Google Scholar 

  • 39.

    Ewers, R. M. et al. Past and future trajectories of forest loss in New Zealand. Biol. Conserv. 133, 312–325 (2006).

    Article  Google Scholar 

  • 40.

    Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317–328 (2010).

    Article  Google Scholar 

  • 41.

    Grossman, G. M. & Krueger, A. B. Environmental Impacts of a North American Free Trade Agreement (National Bureau of Economic Research, 1991).

  • 42.

    Locke, H. et al. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl Sci. Rev. 6, 1080–1082 (2019).

    Article  Google Scholar 

  • 43.

    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Walker, N., Patel, S., Davies, F., Milledge, S. & Hulse, J. Demand-Side Interventions to Reduce Deforestation and Forest Degradation (International Institute for Environment and Development, 2013).

  • 45.

    Marie-Vivien, D., Garcia, C. A., Kushalappa, C. G. & Vaast, P. Trademarks, geographical indications and environmental labelling to promote biodiversity: the case of agroforestry coffee in India. Dev. Policy Rev. 32, 379–398 (2014).

    Google Scholar 

  • 46.

    Symes, W. S., Rao, M., Mascia, M. B. & Carrasco, L. R. Why do we lose protected areas? Factors influencing protected area downgrading, downsizing and degazettement in the tropics and subtropics. Glob. Change Biol. 22, 656–665 (2016).

    Article  Google Scholar 

  • 47.

    Adams, W. M. et al. Biodiversity conservation and the eradication of poverty. Science 306, 1146–1149 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Belle, E. et al. Protected Planet Report 2018 (UNEP-WCMC, IUCN and NGS, 2018).

  • 49.

    Geldmann, J. et al. Essential indicators for measuring area-based conservation effectiveness in the post-2020 global biodiversity framework. Preprint at https://doi.org/10.20944/preprints202003.0370.v1 (2020).

  • 50.

    Protected Areas Management Effectiveness Methodologies (Protected Planet 2020); http://go.nature.com/3ptIPHA

  • 51.

    Ervin, J. Rapid assessment of protected area management effectiveness in four countries. BioScience 53, 833–841 (2003).

    Article  Google Scholar 

  • 52.

    Conservancy, N. Conservation Action Planning: Developing Strategies, Taking Action, and Measuring Success at any Scale: Overview of Basic Practices (Nature Conservancy, 2007).

  • 53.

    Hockings, M. et al. The World Heritage Management Effectiveness Workbook: 2007 Edition: How to Build Monitoring, Assessment and Reporting Systems to Improve the Management Effectiveness of Natural World Heritage Sites 3rd draft (Univ. Queensland, 2007).

  • 54.

    Moomaw, W. R., Masino, S. A. & Faison, E. K. Intact forests in the United States: proforestation mitigates climate change and serves the greatest good. Front. For. Glob. Change 2, 27 (2019).

    Article  Google Scholar 

  • 55.

    Stolton, S., Hockings, M., Dudley, N., MacKinnon, K. & Whitten, T. Reporting Progress in Protected Areas: A Site-Level Management Effectiveness Tracking Tool (World Bank/WWF Alliance for Forest Conservation and Sustainable Use, 2003).

  • 56.

    Hockings, M. et al. The IUCN green list of protected and conserved areas: setting the standard for effective area-based conservation. Parks 25, 57–66 (2019).

    Google Scholar 

  • 57.

    Locke, H. Nature needs half: a necessary and hopeful new agenda for protected areas. Nat. N. South Wales 58, 7–17 (2014).

    Google Scholar 

  • 58.

    Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (WW Norton & Company, 2016).

  • 59.

    The World Database on Protected Areas (WDPA) (IUCN and UNEP-WCMC, accessed 1 January 2020); https://www.protectedplanet.net/

  • 60.

    Iacus, S. M., King, G. & Porro, G. Causal inference without balance checking: coarsened exact matching. Polit. Anal. 20, 1–24 (2012).

    Article  Google Scholar 

  • 61.

    Stuart, E. A. Matching methods for causal inference: a review and a look forward. Stat. Sci. 25, 1–21 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 (Columbia Univ. Center for International Earth Science Information Network, 2018).

  • 65.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article  Google Scholar 

  • 66.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Bode, M., Tulloch, A. I., Mills, M., Venter, O. & Ando, W. A. A conservation planning approach to mitigate the impacts of leakage from protected area networks. Conserv. Biol. 29, 765–774 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Carranza, T., Balmford, A., Kapos, V. & Manica, A. Protected area effectiveness in reducing conversion in a rapidly vanishing ecosystem: the Brazilian Cerrado. Conserv. Lett. 7, 216–223 (2014).

    Article  Google Scholar 

  • 69.

    Ferraro, P. J. Counterfactual thinking and impact evaluation in environmental policy. New Dir. Eval. 2009, 75–84 (2009).

    Article  Google Scholar 

  • 70.

    Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. B 278, 1633–1638 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Iacus, S. M., King, G. & Porro, G. CEM: software for coarsened exact matching. J. Stat. Softw. 30, 1–27 (2009).

    Article  Google Scholar 

  • 72.

    Rosenbaum, P. R. Sensitivity analysis for m-estimates, tests, and confidence intervals in matched observational studies. Biometrics 63, 456–464 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Keele, L. An Overview of rbounds: an R Package for Rosenbaum Bounds Sensitivity Analysis with Matched Data White Paper, Columbus 1–15 (2010); https://go.nature.com/2M5DKXM

  • 74.

    Keele, L. J. rbounds: Perform Rosenbaum Bounds Sensitivity Tests for Matched and Unmatched Data. R Package (2014); https://cran.r-project.org/package=rbounds

  • 75.

    World Development Indicators 2018 (World Bank, 2018).

  • 76.

    Conner, M. M., Saunders, W. C., Bouwes, N. & Jordan, C. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration. Environ. Monit. Assess. 188, 555 (2016).

    PubMed Central  Article  Google Scholar 

  • 77.

    Murakami, D. spmoran (ver. 0.2.0): an R package for Moran eigenvector-based scalable spatial additive mixed modeling. Preprint at https://arxiv.org/abs/1703.04467v9 (2017).

  • 78.

    Murakami, D. & Griffith, D. A. Spatially varying coefficient modeling for large datasets: eliminating N from spatial regressions. Spat. Stat. 30, 39–64 (2019).

    Article  Google Scholar 

  • 79.

    Murakami, D. & Griffith, D. A. Balancing spatial and non-spatial variation in varying coefficient modeling: a remedy for spurious correlation. Preprint at https://arxiv.org/abs/2005.09981 (2020).

  • 80.

    Walker, W. et al. Forest carbon in Amazonia: the unrecognized contribution of Indigenous territories and protected natural areas. Carbon Manag. 5, 479–485 (2014).

    CAS  Article  Google Scholar 

  • 81.

    Robinson, E. J., Albers, H. J. & Busby, G. M. The impact of buffer zone size and management on illegal extraction, park protection, and enforcement. Ecol. Econ. 92, 96–103 (2013).

    Article  Google Scholar 

  • 82.

    Koop, G. & Tole, L. Is there an environmental Kuznets curve for deforestation? J. Dev. Econ. 58, 231–244 (1999).

    Article  Google Scholar 

  • 83.

    Barnes, M. D., Craigie, I. D., Dudley, N. & Hockings, M. Understanding local-scale drivers of biodiversity outcomes in terrestrial protected areas. Ann. NY Acad. Sci. 1399, 42–60 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 84.

    Chamberlin, T. C. The method of multiple working hypotheses. Science 15, 92–96 (1890).

    Google Scholar 


  • Source: Ecology - nature.com

    Brewing up a dirty-water remedy (and more) with kombucha-inspired biosensors

    Continuous versus discrete quantity discrimination in dune snail (Mollusca: Gastropoda) seeking thermal refuges