in

Reduced nest development of reared Bombus terrestris within apiary dense human-modified landscapes

  • 1.

    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x (2011).

    Article  Google Scholar 

  • 2.

    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).

    Article  Google Scholar 

  • 3.

    Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. U.S.A. 99, 16812–16816. https://doi.org/10.1073/pnas.262413599 (2002).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).

    Article  PubMed  Google Scholar 

  • 5.

    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes—Eight hypotheses. Biol. Rev. 87, 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x (2012).

    Article  PubMed  Google Scholar 

  • 6.

    Winfree, R., Aguilar, R., Vazquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076. https://doi.org/10.1890/08-1245.1 (2009).

    Article  PubMed  Google Scholar 

  • 7.

    Isaacs, R. et al. Integrated crop pollination: Combining strategies to ensure stable and sustainable yields of pollination-dependent crops. Basic Appl. Ecol. 22, 44–60. https://doi.org/10.1016/j.baae.2017.07.003 (2017).

    Article  Google Scholar 

  • 8.

    Steffan-Dewenter, I. & Tscharntke, T. Resource overlap and possible competition between honey bees and wild bees in central Europe. Oecologia 122, 288–296. https://doi.org/10.1007/s004420050034 (2000).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Paini, D. R. & Roberts, J. D. Commercial honey bees (Apis mellifera) reduce the fecundity of an Australian native bee (Hylaeus alcyoneus). Biol. Cons. 123, 103–112. https://doi.org/10.1016/j.biocon.2004.11.001 (2005).

    Article  Google Scholar 

  • 10.

    Schaffer, W. M. et al. Competition for nectar between introduced honey bees and native North American bees and ants. Ecology 64, 564–577. https://doi.org/10.2307/1939976 (1983).

    Article  Google Scholar 

  • 11.

    Dupont, Y. L., Hansen, D. M., Valido, A. & Olesen, J. M. Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. Biol. Cons. 118, 301–311. https://doi.org/10.1016/j.biocon.2003.09.010 (2004).

    Article  Google Scholar 

  • 12.

    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. https://doi.org/10.1126/science.1230200 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 13.

    Thomson, D. M. Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources. Ecol. Lett. 19, 1247–1255. https://doi.org/10.1111/ele.12659 (2016).

    Article  PubMed  Google Scholar 

  • 14.

    Thomson, D. Competitive interactions between the invasive European honey bee and native bumble bees. Ecology 85, 458–470. https://doi.org/10.1890/02-0626 (2004).

    Article  Google Scholar 

  • 15.

    Goulson, D. & Sparrow, K. Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size. J. Insect. Conserv. 13, 177–181. https://doi.org/10.1007/s10841-008-9140-y (2009).

    Article  Google Scholar 

  • 16.

    Paini, D. R. Impact of the introduced honey bee (Apis mellifera) (Hymenoptera : Apidae) on native bees: A review. Austral. Ecol. 29, 399–407. https://doi.org/10.1111/j.1442-9993.2004.01376.x (2004).

    Article  Google Scholar 

  • 17.

    Gross, C. L. The effect of introduced honeybees on native bee visitation and fruit-set in Dillwynia juniperina (Fabaceae) in a fragmented ecosystem. Biol. Cons. 102, 89–95. https://doi.org/10.1016/s0006-3207(01)00088-x (2001).

    Article  Google Scholar 

  • 18.

    Nielsen, A., Reitan, T., Rinvoll, A. W. & Brysting, A. K. Effects of competition and climate on a crop pollinator community. Agric. Ecosyst. Environ. 246, 253–260. https://doi.org/10.1016/j.agee.2017.06.006 (2017).

    Article  Google Scholar 

  • 19.

    Lindström, S. A. M., Herbertssön, L., Rundlof, M., Bommarco, R. & Smith, H. G. Experimental evidence that honeybees depress wild insect densities in a flowering crop. Proc. R. Soc. B Biol. Sci. 283, 8. https://doi.org/10.1098/rspb.2016.1641 (2016).

    Article  Google Scholar 

  • 20.

    Magrach, A., González-Varo, J. P., Boiffier, M., Vilà, M. & Bartomeus, I. Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-017-0249-9 (2017).

    Article  PubMed  Google Scholar 

  • 21.

    González-Varo, J. P. & Vilà, M. Spillover of managed honeybees from mass-flowering crops into natural habitats. Biol. Conserv. 212, 376–382. https://doi.org/10.1016/j.biocon.2017.06.018 (2017).

    Article  Google Scholar 

  • 22.

    Begon, M., Harper, J. L. & Townsend, C. R. Ecology: Individuals, Populations, and Communities 3rd edn. (Blackwell Science Ltd, Hoboken, 1996).

    Google Scholar 

  • 23.

    United Nations. (United Nations, Department of Economic and Social Affairs, Population Division, New York, 2012).

  • 24.

    Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1435. https://doi.org/10.1126/science.1255957 (2015).

    CAS  Article  Google Scholar 

  • 25.

    Scheper, J. et al. Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J. Appl. Ecol. 52, 1165–1175. https://doi.org/10.1111/1365-2664.12479 (2015).

    Article  Google Scholar 

  • 26.

    McCune, F., Normandin, E., Mazerolle, M. J. & Fournier, V. Response of wild bee communities to beekeeping, urbanization, and flower availability. Urban Ecosyst. https://doi.org/10.1007/s11252-019-00909-y (2019).

    Article  Google Scholar 

  • 27.

    Samuelson, A. E., Gill, R. J., Brown, M. J. F. & Leadbeater, E. Lower bumblebee colony reproductive success in agricultural compared with urban environments. Proc. R. Soc. B Biol. Sci. 285, 9. https://doi.org/10.1098/rspb.2018.0807 (2018).

    Article  Google Scholar 

  • 28.

    Steffan-Dewenter, I. & Kuhn, A. Honeybee foraging in differentially structured landscapes. Proc. R. Soc. B Biol. Sci. 270, 569–575. https://doi.org/10.1098/rspb.2002.2292 (2003).

    Article  Google Scholar 

  • 29.

    Couvillon, M. J., Schurch, R. & Ratnieks, F. L. W. Dancing bees communicate a foraging preference for rural lands in high-level agri-environment schemes. Curr. Biol. 24, 1212–1215. https://doi.org/10.1016/j.cub.2014.03.072 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Bänsch, S., Tscharntke, T., Ratnieks, F. L. W., Härtel, S. & Westphal, C. Foraging of honey bees in agricultural landscapes with changing patterns of flower resources. Agric. Ecosyst. Environ. 291, 106792. https://doi.org/10.1016/j.agee.2019.106792 (2020).

    Article  Google Scholar 

  • 31.

    Walther-Hellwig, K. & Frankl, R. Foraging distances of Bombus muscorum, Bombus lapidarius, and Bombus terrestris (Hymenoptera, Apidae). J. Insect Behav. 13, 239–246. https://doi.org/10.1023/A:1007740315207 (2000).

    Article  Google Scholar 

  • 32.

    Chauzat, M. P. et al. Demographics of the European apicultural industry. PLoS ONE 8, e79018. https://doi.org/10.1371/journal.pone.0079018 (2013).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Stanley, D. A., Gunning, D. & Stout, J. C. Pollinators and pollination of oilseed rape crops (Brassica napus L.) in Ireland: ecological and economic incentives for pollinator conservation. J. Insect Conserv. 17, 1181–1189. https://doi.org/10.1007/s10841-013-9599-z (2013).

    Article  Google Scholar 

  • 34.

    Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671. https://doi.org/10.1890/07-1292.1 (2008).

    Article  Google Scholar 

  • 35.

    Lebuhn, G., Droege, S., Connor, E., Gemmill-Herren, B. & Azzu, N. in Guidance for practioners 64 pp. (FAO, Rome, 2016).

  • 36.

    De Saeger, S. et al. (ed Rapporten van het Instituut voor Natuur- en Bosonderzoek 2016) (Instituut voor Natuur- en Bosonderzoek, Brussel, 2016).

  • 37.

    3QGIS_Development_Team. QGIS Geographic Information System, 2018).

  • 38.

    Oksanen, J. et al. Community Ecology Package ‘Vegan’. (2016). https://github.com/vegandevs/vegan.

  • 39.

    Meeus, I., de Graaf, D. C., Jans, K. & Smagghe, G. Multiplex PCR detection of slowly-evolving trypanosomatids and neogregarines in bumblebees using broad-range primers. J. Appl. Microbiol. 109, 107–115. https://doi.org/10.1111/j.1365-2672.2009.04635.x (2010).

    CAS  Article  PubMed  Google Scholar 

  • 40.

    Ravoet, J. et al. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 122, 55–58. https://doi.org/10.1016/j.jip.2014.08.007 (2014).

    Article  PubMed  Google Scholar 

  • 41.

    De Smet, L. et al. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses. PLoS ONE 7, e47953. https://doi.org/10.1371/journal.pone.0047953 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Parmentier, L. et al. Commercial bumblebee hives to assess an anthropogenic environment for pollinator support: A case study in the region of Ghent (Belgium). Environ. Monit. Assess. 186, 2357–2367. https://doi.org/10.1007/s10661-013-3543-2 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 43.

    Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80. https://doi.org/10.1038/nature14420 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 44.

    Goulson, D. Bumblebees: Their Behaviour and Ecology (Oxford University Press, Oxford, 2003).

    Google Scholar 

  • 45.

    Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 46.

    Hedges, L. & Olkin, I. Statistical Methods for Meta-Analysis (Academic Press, Cambridge, 1985).

    Google Scholar 

  • 47.

    DeBach, P. The competitive displacement and coexistence principles. Annu. Rev. Entomol. 11, 183–212. https://doi.org/10.1146/annurev.en.11.010166.001151 (1966).

    Article  Google Scholar 

  • 48.

    Balfour, N. J., Gandy, S. & Ratnieks, F. L. W. Exploitative competition alters bee foraging and flower choice. Behav. Ecol. Sociobiol. 69, 1731–1738. https://doi.org/10.1007/s00265-015-1985-y (2015).

    Article  Google Scholar 

  • 49.

    Herbertssön, L., Lindström, S. A. M., Rundlof, M., Bornmarco, R. & Smith, H. G. Competition between managed honeybees and wild bumblebees depends on landscape context. Basic Appl. Ecol. 17, 609–616. https://doi.org/10.1016/j.baae.2016.05.001 (2016).

    Article  Google Scholar 

  • 50.

    Ropars, L., Dajoz, I., Fontaine, C., Muratet, A. & Geslin, B. Wild pollinator activity negatively related to honey bee colony densities in urban context. PLoS ONE 14, 16. https://doi.org/10.1371/journal.pone.0222316 (2019).

    CAS  Article  Google Scholar 

  • 51.

    Ellis, C., Park, K. J., Whitehorn, P., David, A. & Goulson, D. The neonicotinoid insecticide Thiacloprid impacts upon bumblebee colony development under field conditions. Environ. Sci. Technol. 51, 1727–1732. https://doi.org/10.1021/acs.est.6b04791 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 52.

    Geslin, B., Gauzens, B., Thebault, E. & Dajoz, I. Plant pollinator networks along a gradient of urbanisation. PLoS ONE 8, e63421 (2013).

    ADS  Article  Google Scholar 

  • 53.

    Neame, L. A., Griswold, T. & Elle, E. Pollinator nesting guilds respond differently to urban habitat fragmentation in an oak-savannah ecosystem. Insect Conserv. Divers. 6, 57–66 (2013).

    Article  Google Scholar 

  • 54.

    Glaum, P., Simao, M.-C., Vaidya, C., Fitch, G. & Iulinao, B. Big city Bombus: Using natural history and land-use history to find significant environmental drivers in bumble-bee declines in urban development. R. Soc. Open Sci. 4, 170156 (2017).

    ADS  Article  Google Scholar 

  • 55.

    Normandin, E., Vereecken, N. J., Buddle, C. M. & Fournier, V. Taxonomic and functional trait diversity of wild bees in two urban settings. PeerJ 5, e3051 (2017).

    Article  Google Scholar 

  • 56.

    Moerman, R., Vanderplanck, M., Fournier, D., Jacquemart, A. L. & Michez, D. Pollen nutrients better explain bumblebee colony development than pollen diversity. Insect Conserv. Divers. 10, 171–179. https://doi.org/10.1111/icad.12213 (2017).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps

    Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer