in

Patterns and processes of pathogen exposure in gray wolves across North America

  • 1.

    Ferrari, M. J. et al. The dynamics of measles in sub-Saharan Africa. Nature 451, 679–684 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Hudson, P. J. et al. Trophic interactions and population growth rates: Describing patterns and identifying mechanisms. Philos. Trans. R. Soc. B Biol. Sci. 357, 1259–1271 (2002).

    Article  Google Scholar 

  • 3.

    Thieltges, D. W., Ferguson, M. A. D., Jones, C. S., Leslie, R. & Poulin, R. Biogeographical patterns of marine larval trematode parasites in two intermediate snail hosts in Europe. J. Biogeogr. 36, 1493–1501 (2009).

    Article  Google Scholar 

  • 4.

    Bryan, H. M. et al. Seasonal and biogeographical patterns of gastrointestinal parasites in large carnivores: Wolves in a coastal archipelago. Parasitology 139, 781–790 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Hosseini, P. R., Dhondt, A. A. & Dobson, A. Seasonality and wildlife disease: how seasonal birth, aggregation and variation in immunity affect the dynamics of Mycoplasma gallisepticum in house finches. Proc. R Soc. London Ser. B Biol. Sci. 271, 2569–2577 (2004).

    Article  Google Scholar 

  • 6.

    Guernier, V., Hochberg, M. E. & Guégan, J. F. Ecology drives the worldwide distribution of human diseases. PLoS Biol. 2, 740–746 (2004).

    CAS  Article  Google Scholar 

  • 7.

    Nunn, C. L., Altizer, S. M., Sechrest, W. & Cunningham, A. A. Latitudinal gradients of parasite species richness in primates. Divers. Distrib. 11, 249–256 (2005).

    Article  Google Scholar 

  • 8.

    Merino, S. et al. Haematozoa in forest birds from southern Chile: Latitudinal gradients in prevalence and parasite lineage richness. Austral. Ecol. 33, 329–340 (2008).

    Article  Google Scholar 

  • 9.

    Benejam, L., Alcaraz, C., Sasal, P., Simon-Levert, G. & García-Berthou, E. Life history and parasites of the invasive mosquitofish (Gambusia holbrooki) along a latitudinal gradient. Biol. Invasions 11, 2265–2277 (2009).

    Article  Google Scholar 

  • 10.

    Seabloom, E. W., Borer, E. T., Mitchell, C. E. & Power, A. G. Viral diversity and prevalence gradients in North American Pacific Coast grasslands. Ecology 91, 721–732 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Bonds, M. H., Dobson, A. P. & Keenan, D. C. Disease ecology, biodiversity, and the latitudinal gradient in income. PLoS Biol. 10, e1001456 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Kriger, K. M., Pereoglou, F. & Hero, J. M. Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in eastern Australia. Conserv. Biol. 21, 1280–1290 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Peterson, R. O., Thomas, N. J., Thurber, J. M., Vucetich, J. A. & Waite, T. A. Population limitations and the wolves of Isle Royale. J. Mammal. 97, 828–841 (1998).

    Article  Google Scholar 

  • 14.

    Almberg, E. S., Mech, L. D., Smith, D. W., Sheldon, J. W. & Crabtree, R. L. A serological survey of infectious disease in Yellowstone National Park’s canid community. PLoS ONE 4, e7042 (2009).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 15.

    Almberg, E. S. et al. Social living mitigates the costs of a chronic illness in a cooperative carnivore. Ecol. Lett. 18, 660–667 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Brandell, E. E. et al. Infectious diseases in Yellowstone’s Wolves. In Yellowstone Wolves: Science and Discovery in the World’s First National Park (eds. Smith, D. W., Stahler, D. R. & MacNulty, D. R.) 121–133 (The University of Chicago Press, 2020).

  • 17.

    Watts, D. E. & Benson, A. M. Prevalence of antibodies for selected canine pathogens among wolves (Canis lupus) from the Alaska Peninsula, USA. J. Wildl. Dis. 52, 506–515 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Carstensen, M. et al. A serosurvey of diseases of free-ranging gray wolves (Canis lupus) in Minnesota, USA. J. Wildl. Dis. 53, 459–471 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Anderson, R. M. & May, R. M. Regulation and stability of host-parasite population interactions: I. Regulatory processes. J. Anim. Ecol. 47, 219–247 (1978).

    Article  Google Scholar 

  • 20.

    Silbernagel, E. R., Skelton, N. K., Waldner, C. L. & Bollinger, T. K. Interaction among deer in a chronic wasting disease endemic zone. J. Wildl. Manag. 75, 1453–1461 (2011).

    Article  Google Scholar 

  • 21.

    Gehrt, S. D. Raccoons and allies. In Wild Mammals of North America: Biology, Management, and Conservation (eds. Feldhamer, G., Thompson, B. & Chapman, J.) 611–633 (2003).

  • 22.

    McFarlane, R., Sleigh, A. & McMichael, T. Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region. EcoHealth 9, 24–35 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Woodroffe, R. et al. Contact with domestic dogs increases pathogen exposure in endangered African wild dogs (Lycaon pictus). PLoS ONE 7, e30099 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Knobel, D. L., Butler, J. R., Lembo, T., Critchlow, R. & Gompper, M. E. Dogs, disease, and wildlife. In Free-Ranging Dogs and Wildlife Conservation (ed. Gompper, M. E.) (Oxford University Press, Oxford, 2014).

    Google Scholar 

  • 25.

    Viana, M. et al. Dynamics of a morbillivirus at the domestic–wildlife interface: Canine distemper virus in domestic dogs and lions. Proc. Natl. Acad. Sci. 112, 1464–1469 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Bianco, A. et al. Two waves of canine distemper virus showing different spatio-temporal dynamics in Alpine wildlife (2006–2018). Infect. Genet. Evol. 84, 104359 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Dubey, J. P., Schares, G. & Ortega-Mora, L. M. Epidemiology and control of neosporosis and Neospora caninum. Clin. Microbiol. Rev. 20, 323–367 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Anderson, T. M. et al. Molecular and evolutionary history of melanism in North American gray wolves. Science 323, 1339–1343 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Candille, S. I. et al. A β-defensin mutation causes black coat color in domestic dogs. Science 318, 1418–1423 (2007).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Coulson, T., Macnulty, D. R., Stahler, D. R., Wayne, R. K. & Smith, D. W. Modeling effects of environmental change on wolf population dynamics, trait evolution, and life history. Science 334, 1275–1278 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Hedrick, P. W., Stahler, D. R. & Dekker, D. Heterozygote advantage in a finite population: Black color in wolves. J. Hered. 105, 457–465 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Altizer, S., Davis, A. K., Cook, K. C. & Cherry, J. J. Age, sex, and season affect the risk of mycoplasmal conjunctivitis in a southeastern house finch population. Can. J. Zool. 82, 755–763 (2004).

    Article  Google Scholar 

  • 33.

    Biek, R. et al. Factors associated with pathogen seroprevalence and infection in Rocky Mountains cougars. J. Wildl. Dis. 42, 606–615 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Härkönen, T., Harding, K., Rasmussen, T. D., Teilmann, J. & Dietz, R. Age- and sex-specific mortality patterns in an emerging wildlife epidemic: The phocine distemper in European harbour seals. PLoS ONE 2, e887 (2007).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Guerra-Silveira, F. & Abad-Franch, F. Sex bias in infectious disease epidemiology: Patterns and processes. PLoS ONE 8, e62390 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    McDonald, J. L., Smith, G. C., McDonald, R. A., Delahay, R. J. & Hodgson, D. Mortality trajectory analysis reveals the drivers of sex-specific epidemiology in natural wildlife–disease interactions. Proc. R. Soc. B Biol. Sci. 281, 20140526 (2014).

    Article  Google Scholar 

  • 37.

    Williams, E. S. & Barker, I. K. (eds) Infectious Diseases of Wild Mammals (Wiley, New York, 2001).

    Google Scholar 

  • 38.

    USGS. North America Political Boundaries. (2006). Available at: https://www.sciencebase.gov/catalog/item/4fb555ebe4b04cb937751db9.

  • 39.

    Justice-Allen, A. & Clement, M. J. Effect of canine parvovirus and canine distemper virus on the Mexican wolf (Canis lupus baileyi) population in the USA. J. Wildl. Dis. 55, 682–688 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Nelson, B. et al. Prevalence of antibodies to canine parvovirus and distemper virus in wolves in the Canadian Rocky Mountains. J. Wildl. Dis. 48, 68–76 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing). (2019 v3.6.3). Available at: https://www.R-project.org.

  • 42.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 43.

    Gelman, A. & Loken, E. The garden of forking paths: Why multiple comparisons can be a problem, even when there is no “fishing expedition” or “p-hacking” and the research hypothesis was posited ahead of time. Psychol. Bull. 140, 1272–1280 (2013).

    Google Scholar 

  • 44.

    Fuller, T. K. & Murray, D. L. Biological and logistical explanations of variation in wolf population density. Anim. Conserv. 1, 153–157 (1998).

    Article  Google Scholar 

  • 45.

    Fuller, T. K. & Sievert, P. R. Carnivore demography and the consequences of changes in prey availability. In Conservation biology series – Cambridge 163–178 (2001).

  • 46.

    MacNulty, D. R., Tallian, A., Stahler, D. R. & Smith, D. W. Influence of group size on the success of wolves hunting bison. PLoS ONE 9, 1–8 (2014).

    Article  CAS  Google Scholar 

  • 47.

    Barber-Meyer, S. M., Mech, L. D., Newton, W. E. & Borg, B. L. Differential wolf-pack-size persistence and the role of risk when hunting dangerous prey. Behaviour 153, 1473–1487 (2016).

    Article  Google Scholar 

  • 48.

    Gipson, P. S., Ballard, W. B., Nowak, R. M. & Mech, L. D. Accuracy and precision of estimating age of gray wolves by tooth wear. J. Wildl. Manag. 64, 752 (2000).

    Article  Google Scholar 

  • 49.

    Fuller, T. K., Mech, L. D. & Cochrane, J. F. Wolf population dynamics. In Wolves: Behavior, Ecology, and Conservation (eds Mech, L. D. & Boitani, L.) 161–191 (University of Chicago Press, Chicago, 2003).

    Google Scholar 

  • 50.

    Jimenez, M. D. et al. Wolf dispersal in the Rocky Mountains, Western United States: 1993–2008. J. Wildl. Manag. 81, 581–592 (2017).

    Article  Google Scholar 

  • 51.

    NASA Socioeconomic Data and Applications Center. Gridded Population of the World (GPW), v4. EarthData (2015). Available at: https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-rev11/data-download.

  • 52.

    Millán, J. et al. Patterns of exposure of Iberian wolves (Canis lupus) to canine viruses in human-dominated landscapes. EcoHealth 13, 123–134 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    North American Land Change Monitoring System 30m, 2010–2015 (Landsat). Commission of Environmental Cooperation (2015). Available at: http://www.cec.org/north-american-land-change-monitoring-system/.

  • 54.

    USGS EROS Archive—Digital Elevation—Global 30 Arc-Second Elevation (GTOPO30). Earth Resources Observation and Science (EROS) Center (1996).

  • 55.

    Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).

    Article  Google Scholar 

  • 56.

    Poole, K. G., Wakelyn, L. A. & Nicklen, P. N. Habitat selection by lynx in the Northwest Territories. Can. J. Zool. 74, 845–850 (1996).

    Article  Google Scholar 

  • 57.

    Nielsen, S. E., Boyce, M. S., Stenhouse, G. B. & Munro, R. H. M. Modeling grizzly bear habitats in the yellowhead ecosystem of Alberta: Taking autocorrelation seriously. Ursus 13, 45–56 (2001).

    Google Scholar 

  • 58.

    Arjo, W. M. & Pletscher, D. H. Coyote and wolf habitat use in northwestern Montana. Northwest Sci. 78, 24–32 (2004).

    Google Scholar 

  • 59.

    Oakleaf, J. K. et al. Habitat selection by recolonizing wolves in the northern Rocky Mountains of the United States. J. Wildl. Manag. 70, 554–563 (2006).

    Article  Google Scholar 

  • 60.

    Hebblewhite, M. & Merrill, E. Modelling wildlife-human relationships for social species with mixed-effects resource selection models. J. Appl. Ecol. 45, 834–844 (2008).

    Article  Google Scholar 

  • 61.

    Roever, C. L., Boyce, M. S. & Stenhouse, G. B. Grizzly bears and forestry II: Grizzly bear habitat selection and conflicts with road placement. For. Ecol. Manag. 256, 1262–1269 (2008).

    Article  Google Scholar 

  • 62.

    Houle, M., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J. P. Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landsc. Ecol. 25, 419–433 (2010).

    Article  Google Scholar 

  • 63.

    Mayor, S. J., Schneider, D. C., Schaefer, J. A. & Mahoney, S. P. Habitat selection at multiple scales. Ecoscience 16, 238–247 (2009).

    Article  Google Scholar 

  • 64.

    Milakovic, B. et al. Habitat selection by a focal predator (Canis lupus) in a multiprey ecosystem of the northern Rockies. J. Mammal. 92, 568–582 (2011).

    Article  Google Scholar 

  • 65.

    Kittle, A. M. et al. Wolves adapt territory size, not pack size to local habitat quality. J. Anim. Ecol. 84, 1177–1186 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Kittle, A. M. et al. Landscape-level wolf space use is correlated with prey abundance, ease of mobility, and the distribution of prey habitat. Ecosphere 8, e01783 (2017).

    Article  Google Scholar 

  • 67.

    Morin, S. J., Bowman, J., Marrotte, R. R. & Fortin, M. J. Fine-scale habitat selection by sympatric Canada lynx and bobcat. Ecol. Evol. 10, 9396–9409 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    O’Neil, S. T., Vucetich, J. A., Beyer, D. E., Hoy, S. R. & Bump, J. K. Territoriality drives preemptive habitat selection in recovering wolves: Implications for carnivore conservation. J. Anim. Ecol. 89, 1433–1447 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Gelman, A. & Hill, J. Data analysis using regression and multilevel/hierarchical models (Cambridge University Press, 2007).

  • 70.

    Menard, S. Standards for standardized logistic regression coefficients. Soc. Forces 89, 1409–1428 (2011).

  • 71.

    Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression (Wiley, New York, 2000).

    Google Scholar 

  • 72.

    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, Berlin, 2009).

    Google Scholar 

  • 73.

    Finkelman, B. S. et al. Global patterns in seasonal activity of influenza A/H3N2, A/H1N1, and B from 1997 to 2005: Viral coexistence and latitudinal gradients. PLoS ONE 2, e1296 (2007).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Nguyen, D. et al. Fungal disease incidence along tree diversity gradients depends on latitude in European forests. Ecol. Evol. 6, 2426–2438 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Rhodes, C. J., Atkinson, R. P. D., Anderson, R. M. & Macdonald, D. W. Rabies in Zimbabwe: reservoir dogs and the implications for disease control. Philos. Trans. R Soc. Lond. Ser. B Biol. Sci. 353, 999–1010 (1998).

    CAS  Article  Google Scholar 

  • 76.

    Lembo, T. et al. Exploring reservoir dynamics: A case study of rabies in the Serengeti ecosystem. J. Appl. Ecol. 45, 1246–1257 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Nunn, C. L., Altizer, S., Jones, K. E. & Sechrest, W. Comparative tests of parasite species richness in primates. Am. Nat. 162, 597–614 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Nunn, C. L. & Heymann, E. W. Malaria infection and host behavior: A comparative study of Neotropical primates Malaria infection and host behavior. Behav. Ecol. Sociobiol. 59, 30–37 (2005).

    Article  Google Scholar 

  • 79.

    Begon, M., Bowers, R. G., Kadianakis, N. & Hodgkinson, D. E. Disease and community structure: the importance of host self-regulation in a host-host-pathogen model. Am. Nat. 139, 1131–1150 (1992).

    Article  Google Scholar 

  • 80.

    Power, A. G. & Mitchell, C. E. Pathogen spillover in disease epidemics. Am. Nat. 164, S79–S89 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 81.

    Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 82.

    Schweizer, R. M. et al. Natural selection and origin of a melanistic allele in North American gray wolves. Mol. Biol. Evol. 35, 1190–1209 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 83.

    Wilson, P. J., Grewal, S. K., Mallory, F. F. & White, B. N. Genetic characterization of hybrid wolves across Ontario. J. Hered. 100, S80–S89 (2009).

    CAS  Article  Google Scholar 

  • 84.

    Gondim, L. F. P. et al. Transmission of Neospora caninum between wild and domestic animals. J. Parasitol. 90, 1361–1365 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 85.

    Dubey, J. P. et al. Seroprevalence of Neospora caninum and Toxoplasma gondii antibodies in white-tailed deer (Odocoileus virginianus) from Iowa and Minnesota using four serologic tests. Vet. Parasitol. 161, 330–334 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 86.

    Stieve, E., Beckmen, K., Kania, S. A., Widner, A. & Patton, S. Neospora caninum and Toxoplasma gondii antibody prevalence in Alaska wildlife. J. Wildl. Dis. 46, 348–355 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 87.

    Pruvot, M., Hutchins, W. & Orsel, K. Statistical evaluation of a commercial Neospora caninum competitive ELISA in the absence of a gold standard: Application to wild elk (Cervus elaphus) in Alberta. Parasitol. Res. 113, 2899–2905 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 88.

    Bondo, K. J. et al. Health survey of boreal caribou (Rangifer tarandus caribou) in northeastern British Columbia, Canada. J. Wildl. Dis. 55, 544–562 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 89.

    Donahoe, S. L., Lindsay, S. A., Krockenberger, M., Phalen, D. & Šlapeta, J. A review of neosporosis and pathologic findings of Neospora caninum infection in wildlife. Int. J. Parasitol. Parasites Wildl. 4, 216–238 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Huggard, D. J. Prey selectivity of wolves in Banff National Park I. Prey species. Can. J. Zool. 71, 130–139 (1993).

    Article  Google Scholar 

  • 91.

    Hebblewhite, M., Paquet, P. C., Pletscher, D. H., Lessard, R. B. & Callaghan, C. J. Development and application of a ratio estimator to estimate wolf kill rates and variance in a multiple-prey system. Wildl. Soc. Bull. 31, 933–946 (2003).

    Google Scholar 

  • 92.

    Adams, L. G. et al. Are inland wolf-ungulate systems influenced by marine subsidies of Pacific salmon?. Ecol. Appl. 20, 251–262 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 93.

    Latham, A. D. M., Latham, M. C., McCutchen, N. A. & Boutin, S. Invading white-tailed deer change wolf-caribou dynamics in northeastern Alberta. J. Wildl. Manag. 75, 204–212 (2011).

    Article  Google Scholar 

  • 94.

    Metz, M. C., Smith, D. W., Vucetich, J. A., Stahler, D. R. & Peterson, R. O. Seasonal patterns of predation for gray wolves in the multi-prey system of Yellowstone National Park. J. Anim. Ecol. 81, 553–563 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 95.

    Merkle, J. A., Polfus, J. L., Derbridge, J. J. & Heinemeyer, K. S. Dietary niche partitioning among black bears, grizzly bears and wolves in a multi-prey ecosystem. Can. J. Zool. 95, 663–671 (2017).

    Article  Google Scholar 

  • 96.

    Gable, T. D., Windels, S. K., Bruggink, J. G. & Barber-Meyer, S. M. Weekly summer diet of gray wolves (Canis lupus) in northeastern Minnesota. Am. Midl. Nat. 179, 15–27 (2018).

    Article  Google Scholar 

  • 97.

    O’Donovan, S. A., Budge, S. M., Hobson, K. A., Kelly, A. P. & Derocher, A. E. Intrapopulation variability in wolf diet revealed using a combined stable isotope and fatty acid approach. Ecosphere 9, e02420 (2018).

    Article  Google Scholar 

  • 98.

    Whittington, J., St. Clair, C. C. & Mercer, G. Spatial responses of wolves to roads and trails in mountain valleys. Ecol. Appl. 15, 543–553 (2005).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps

    Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer