in

Social signals mediate oviposition site selection in Drosophila suzukii

  • 1.

    Prokopy, R. J. & Roitberg, B. D. Joining and avoidance behavior in nonsocial insects. Annu. Rev. Entomol. 46, 631–665 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Rudolf, V. H. & Rödel, M. O. Oviposition site selection in a complex and variable environment: the role of habitat quality and conspecific cues. Oecologia 142, 316–325 (2005).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Carrasco, D., Larsson, M. C. & Anderson, P. Insect host plant selection in complex environments. Curr. Opin. Insect Sci. 8, 1–7 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Dall, S. R., Giraldeau, L. A., Olsson, O., McNamara, J. M. & Stephens, D. W. Information and its use by animals in evolutionary ecology. Trends Ecol. Evol. 20, 187–193 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Kennedy, G. G. & Storer, N. P. Life systems of polyphagous arthropod pests in temporally unstable cropping systems. Annu. Rev. Entomol. 45, 467–493 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Prokopy, R. J. Marking pheromones. In: Capinera J. L. (eds) Encyclopedia of Entomology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6359-6_1730 (2008).

  • 7.

    Edmunds, A. J., Aluja, M., Diaz-Fleischer, F., Patrian, B. & Hagmann, L. Host marking pheromone (HMP) in the Mexican fruit fly Anastrepha ludens. CHIMIA Int. J. Chem. 64, 37–42 (2010).

    CAS  Article  Google Scholar 

  • 8.

    Hauser, M. A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag. Sci. 67, 1352–1357 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Calabria, G., Máca, J., Bächli, G., Serra, L. & Pascual, M. First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J. Appl. Entomol. 136, 139–147 (2012).

    Article  Google Scholar 

  • 10.

    Deprá, M., Poppe, J. L., Schmitz, H. J., De Toni, D. C. & Valente, V. L. The first records of the invasive pest Drosophila suzukii in the South American continent. J. Pest Sci. 87, 379–383 (2014).

    Article  Google Scholar 

  • 11.

    Hassani, I. M. et al. First occurrence of the pest Drosophila suzukii (Diptera: Drosophilidae) in the Comoros Archipelago (Western Indian Ocean). Afr. Entomol. 28, 78–83 (2020).

    Article  Google Scholar 

  • 12.

    Bellamy, D. E., Sisterson, M. S. & Walse, S. S. Quantifying host potentials: indexing postharvest fresh fruits for spotted wing drosophila, Drosophila suzukiiPLoS One8, e61227. https://doi.org/10.1371/journal.pone.0061227 (2013).

  • 13.

    Lee, J. C. et al. Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 108, 117–129 (2015).

    Article  Google Scholar 

  • 14.

    Kenis, M. et al. Non-crop plants used as hosts by Drosophila suzukii in Europe. J. Pest Sci. 89, 735–748 (2016).

    Article  Google Scholar 

  • 15.

    Elsensohn, J. E. & Loeb, G. M. Non-crop host sampling yields insights into small-scale population dynamics of Drosophila suzukii (Matsumura). Insects 9, 5. https://doi.org/10.3390/insects9010005 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Mitsui, H., Takahashi, K. H. & Kimura, M. T. Spatial distributions and clutch sizes of Drosophila species ovipositing on cherry fruits of different stages. Pop. Ecol. 48, 233–237 (2006).

    Article  Google Scholar 

  • 17.

    Atallah, J., Teixeira, L., Salazar, R., Zaragoza, G. & Kopp, A. The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc. R. Soc. B Biol. Sci. 281, 20132840. https://doi.org/10.1098/rspb.2013.2840 (2014).

    Article  Google Scholar 

  • 18.

    Crava, C. M. et al. Structural and transcriptional evidence of mechanotransduction in the Drosophila suzukii ovipositor. J. Insect Physiol. 125, 104088 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Burrack, H. J., Fernandez, G. E., Spivey, T. & Kraus, D. A. Variation in selection and utilization of host crops in the field and laboratory by Drosophila suzukii Matsumara (Diptera: Drosophilidae), an invasive frugivore. Pest Manag. Sci. 69, 1173–1180 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Karageorgi, M. et al. Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Curr. Biol. 27, 847–853 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Silva-Soares, N. F., Nogueira-Alves, A., Beldade, P. & Mirth, C. K. Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii. BMC Ecol. 17, 21 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 22.

    Olazcuaga, L. et al. Oviposition preference and larval performance of Drosophila suzukii (Diptera: Drosophilidae), spotted-wing Drosophila: Effects of fruit identity and composition. Environ. Entomol. 48, 867–881 (2019).

    PubMed  Article  Google Scholar 

  • 23.

    Rendon, D. et al. Interactions among morphotype, nutrition, and temperature impact fitness of an invasive fly. Ecol. Evol. 9, 2615–2628 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Scheidler, N. H., Liu, C., Hamby, K. A., Zalom, F. G. & Syed, Z. Volatile codes: correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci. Rep. 5, 14059. https://doi.org/10.1038/srep14059 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Keesey, I. W. et al. Adult frass provides a pheromone signature for Drosophila feeding and aggregation. J. Chem. Ecol. 42, 739–747 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Lasa, R., Navarro-de-la-Fuente, L., Gschaedler-Mathis, A. C., Kirchmayr, M. R. & Williams, T. Yeast species, strains, and growth media mediate attraction of Drosophila suzukii (Diptera: Drosophilidae). Insects 10, 228. https://doi.org/10.3390/insects10080228 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  • 27.

    Bellutti, N. et al. Dietary yeast affects preference and performance in Drosophila suzukii. J. Pest Sci. 91, 651–660 (2018).

    Article  Google Scholar 

  • 28.

    Wallingford, A. K., Hesler, S. P., Cha, D. H. & Loeb, G. M. Behavioral response of spotted-wing drosophila, Drosophila suzukii Matsumura, to aversive odors and a potential oviposition deterrent in the field. Pest Manag. Sci. 72, 701–706 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Tait, G. et al. Reproductive site selection: evidence of an oviposition cue in a highly adaptive dipteran, Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 49, 355–363 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Lin, C. C., Prokop-Prigge, K. A., Preti, G. & Potter, C. J. Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions. Elife 4, e08688. https://doi.org/10.7554/eLife.08688 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Duménil, C. et al. Pheromonal cues deposited by mated females convey social information about egg-laying sites in Drosophila melanogaster. J. Chem. Ecol. 42, 259–269 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 32.

    Barker, J. S. F. & Podger, R. N. Interspecific competition between Drosophila melanogaster and Drosophila simulans: effects of larval density on viability, developmental period and adult body weight. Ecol. 51, 170–189 (1970).

    Article  Google Scholar 

  • 33.

    Rohlfs, M., Obmann, B. & Petersen, R. Competition with filamentous fungi and its implication for a gregarious lifestyle in insects living on ephemeral resources. Ecol. Entomol. 30, 556–563 (2005).

    Article  Google Scholar 

  • 34.

    Durisko, Z., Anderson, B. & Dukas, R. Adult fruit fly attraction to larvae biases experience and mediates social learning. J. Exp. Biol. 217, 1193–1197 (2014).

    PubMed  Article  Google Scholar 

  • 35.

    Prokopy, R. J. & Duan, J. J. Socially facilitated egglaying behavior in Mediterranean fruit flies. Behav. Ecol. Sociobiol. 42, 117–122 (1998).

    Article  Google Scholar 

  • 36.

    Elsensohn, J. Factors affecting oviposition behavior. In Drosophila suzukii (North Carolina State University, Raleigh, 2020).

  • 37.

    Hardin, J. A., Kraus, D. A. & Burrack, H. J. Diet quality mitigates intraspecific larval competition in Drosophila suzukii. Entomol. Exp. Appl. 156, 59–65 (2015).

    CAS  Article  Google Scholar 

  • 38.

    Averill, A. L. & Prokopy, R. J. Intraspecific competition in the tephritid fruit fly Rhagoletis pomonella. Ecol. 68, 878–886 (1987).

    Article  Google Scholar 

  • 39.

    Arredondo, J. & Diaz-Fleischer, F. Oviposition deterrents for the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae) from fly faeces extracts. Bull. Entomol. Res. 96, 35–42 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Nufio, C. R. & Papaj, D. R. Host marking behavior in phytophagous insects and parasitoids. Entomol. Exp. Appl. 99, 273–293 (2001).

    Article  Google Scholar 

  • 41.

    Papaj, D. R. Use and avoidance of occupied hosts as a dynamic process in tephritid flies. In Insect-Plant Interactions (ed. Bernays, E.A.) 25–46 (CRC Press, Boca Raton, 2017).

  • 42.

    Bernays, E.A. & Chapman, R.F. Behavior: the process of host-plant selection. In Host-Plant Selection by Phytophagous Insects Vol. 2. (eds. Bernays, E.A. & Chapman, R.F) 95–165 (Springer Science & Business Media, Berlin, 2007).

  • 43.

    Schoonhoven, L. M. Host-marking pheromones in Lepidoptera, with special reference to two Pieris spp. J. Chem. Ecol. 16, 3043–3052 (1990).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Dancau, T., Stemberger, T. L., Clarke, P. & Gillespie, D. R. Can competition be superior to parasitism for biological control? The case of spotted wing Drosophila (Drosophila suzukii), Drosophila melanogaster and Pachycrepoideus vindemmiae. Biocontrol Sci. Tech. 27, 3–16 (2017).

    Article  Google Scholar 

  • 45.

    Rosenheim, J. A. The relative contributions of time and eggs to the cost of reproduction. Evol. 53, 376–385 (1999).

    Article  Google Scholar 

  • 46.

    Jiménez-Padilla, Y., Ferguson, L. V. & Sinclair, B. J. Comparing apples and oranges (and blueberries and grapes): fruit type affects development and cold susceptibility of immature Drosophila suzukii (Diptera: Drosophilidae). Can. Entomol. 152, 532–545 (2020).

    Article  Google Scholar 

  • 47.

    Papaj, D. R. & Messing, R. H. Functional shifts in the use of parasitized hosts by a tephritid fly: the role of host quality. Behav. Ecol. 7, 235–242 (1996).

    Article  Google Scholar 

  • 48.

    Ingleby, F. C. Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects 6, 732–742. https://doi.org/10.3390/insects6030732 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Snellings, Y. et al. The role of cuticular hydrocarbons in mate recognition in Drosophila suzukii. Sci. Rep. 8, 1–11 (2018).

    CAS  Article  Google Scholar 

  • 50.

    Li, G. & Ishikawa, Y. Oviposition deterrents in larval frass of four Ostrinia species fed on an artificial diet. J. Chem Ecol. 30, 1445–1456 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Wada-Katsumata, A. et al. Gut bacteria mediate aggregation in the German cockroach. Proc. Nat. Acad. Sci. 112, 15678–15683 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 52.

    Mansourian, S. et al. Fecal-derived phenol induces egg-laying aversion in Drosophila. Curr. Biol. 26, 2762–2769 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 53.

    Bueno, E. et al. Response of wild spotted Wing Drosophila (Drosophila suzukii) to microbial volatiles. J. Chem. Ecol. 39, 1–11 (2019).

    Google Scholar 

  • 54.

    Behar, A., Jurkevitch, E. & Yuval, B. Bringing back the fruit into fruit fly–bacteria interactions. Mol. Ecol. 17, 1375–1386 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Yun, J. H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 56.

    Bing, X., Gerlach, J., Loeb, G. & Buchon, N. Nutrient-dependent impact of microbes on Drosophila suzukii development. MBio 9, e02199-e2217. https://doi.org/10.1128/mBio.02199-17 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Martinez-Sañudo, I. et al. Metagenomic analysis reveals changes of the Drosophila suzukii microbiota in the newly colonized regions. Insect Sci. 25, 833–846 (2018).

    PubMed  Article  Google Scholar 

  • 58.

    Silva, M. A., Bezerra-Silva, G. C. D. & Mastrangelo, T. The host marking pheromone application on the management of fruit flies—a review. Braz. Arch. Biol. Tech. 55, 835–842 (2012).

    CAS  Article  Google Scholar 

  • 59.

    Hamby, K. A. & Becher, P. G. Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. J. Pest Sci. 89, 621–630 (2016).

    Article  Google Scholar 

  • 60.

    Alkema, J. T., Dicke, M. & Wertheim, B. Context-dependence and the development of push-pull approaches for integrated management of Drosophila suzukii. Insects 10, 454. https://doi.org/10.3390/insects10120454 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Revadi, S. et al. Sexual behavior of Drosophila suzukii. Insects 6(183), 196. https://doi.org/10.3390/insects6010183 (2015).

    Article  Google Scholar 

  • 62.

    Elya, C. et al. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. Elife 7, e34414. https://doi.org/10.7554/eLife.34414 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Emiljanowicz, L. M., Ryan, G. D., Langille, A. & Newman, J. Development, reproductive output and population growth of the fruit fly pest Drosophila suzukii (Diptera: Drosophilidae) on artificial diet. J Econ. Entomol. 107, 1392–1398 (2014).

    PubMed  Article  Google Scholar 

  • 64.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).


  • Source: Ecology - nature.com

    Predator-induced defence in a dinoflagellate generates benefits without direct costs

    Movement behavior of a solitary large carnivore within a hotspot of human-wildlife conflicts in India