in

Soil mite communities (Acari: Mesostigmata) as indicators of urban ecosystems in Bucharest, Romania

  • 1.

    Bremner, J. et al. World population highlights: Key findings from PRB’s 2010 world population data sheet. Popul. Bull. 65(2), 1–12 (2010).

    Google Scholar 

  • 2.

    McGranahan, G., Marcotullio, P. Urban systems. In Ecosystems and Human Well-being: Current State and Trends. Volume I (eds. Hassan, R., Scholes, R., Ash, N.) 795–825 (Island Press, Washington, DC, 2005).

  • 3.

    Robrecht, H. & Lorena, L. Ecosystem services in cities and public management. In The Economics of Ecosystems and Biodiversity for Local and Regional Policy (ed Wittmer, H.) 60–80 (Progress Press, 2010).

  • 4.

    Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—A global review. Geoderma 262, 101–111 (2016).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Millennium Ecosystem Assessment Panel. Ecosystems and Human Well-being: Synthesis. Washington, DC: Island Press. https://www.millenniumassessment.org/en/index.html (2005).

  • 6.

    McDonald, R.I., Marcotullio, P.J. & Güneralp, B. Urbanization and Global Trends in Biodiversity and Ecosystem Services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. A Global Assessment (eds. Elmqvist, T. et al.) 31–52 (Springer, Dordrecht, 2013).

  • 7.

    Anthrop, M. Changing patterns in the urbanized countryside of Western Europe. Landsc. Ecol. 15, 257–270 (2000).

    Article  Google Scholar 

  • 8.

    Coleman, D.C. & Wall, D.H. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. In Soil Microbiology, Ecology and Biochemistry (ed Paul, E.) 111–149 (Academic Press, Waltham, 2015).

  • 9.

    Dirilgen, T. et al. Mite community composition across a European transect and its relationships to variation in other components of soil biodiversity. Appl. Soil Ecol. 97, 86–97 (2016).

    Article  Google Scholar 

  • 10.

    Culliney, T. W. Role of arthropods in maintaining soil fertility. Agriculture. 3, 629–659 (2013).

    Article  Google Scholar 

  • 11.

    Krantz, G. W. & Walter, D. E. A manual of Acarology. (ed. Texas Tech University Press, USA) 98–100 (Krantz & Walter, 2009).

  • 12.

    McIntyre, N. E. Ecology of urban arthropods: A review and a call to action. Ann. Entomol. Soc. Am. 93, 825–835 (2000).

    Article  Google Scholar 

  • 13.

    Jones, E. L. & Leather, S. R. Invertebrates in urban areas: A review. Eur. J. Entomol. 109, 463–478 (2012).

    Article  Google Scholar 

  • 14.

    Koehler, H. H. Predatory mites (Gamasina, Mesostigmata). Agric. Ecosyst. Environ. 74, 395–410 (1999).

    Article  Google Scholar 

  • 15.

    Gulvik, M. E. Mites (Acari) as indicators of soil biodiversity and land use monitoring: A review. Pol. J. Ecol. 55, 415–450 (2007).

    Google Scholar 

  • 16.

    Salmane, I. & Brumelis, G. Species list and habitat preference of Mesostigmata mites (Acari, Parasitiformes) in Latvia. Acarologia. 50, 373–394 (2010).

    Article  Google Scholar 

  • 17.

    Kaczmarek, S., Marquardt, T. & Falenczyk-Kozirog, K. Diversity of the Mesostigmata (Acari) in tree-hollows of selected deciduous tree species. Biol. Lett. 48, 29–37 (2011).

    Article  Google Scholar 

  • 18.

    Madej, G., Barczyk, G. & Gawenda, J. Importance of microhabitats for preservation of species diversity, on the basis of mesostigmatid mites (Mesostigmata, Arachnida, Acari). Pol. J. Environ. Stud. 20(4), 961–968 (2011).

    Google Scholar 

  • 19.

    Huhta, V., Pietikäinen, A. S. & Penttinen, R. Importance of dead wood for soil mite (Acarina) communities in boreal old-growth forests. Soil Organ. 84(3), 499–512 (2012).

    Google Scholar 

  • 20.

    Wissuwa, J., Salamon, J. A. & Frank, T. Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in Eastern Austria. Soil Biol. Biochem. 50, 96–107 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Manu, M. Structure and dynamics of the predatory mites (Acari: Mesostigmata- Gamasina) from the central parks and forest ecosystems from/near Bucharest. In Species Monitoring in the Central Parks of Bucharest (ed. Onete, M.) 68–78 (Ars Docendi, Universitatea Bucureşti, 2008).

  • 22.

    Manu, M., Szekely, L., Vasiliu, Oromulu, L., Bărbuceanu, D., Honciuc, V. et al. Bucharest. In Vertebrates and Invertebrates of European Cities: Selected Non-Avian Fauna (ed. Kelcey, J.G.) 257–322 (Springer Science+Business Media LLC, New York, 2015).

  • 23.

    Manu, M., Băncilă, R. I. & Onete, M. Importance of moss habitats for mesostigmatid mites (Acari: Mesostigmata) in Romania. Turk. J. Zool. 42(6), 673–683 (2018).

    Article  Google Scholar 

  • 24.

    Klarner, B., Maraun, M. & Scheu, S. Trophic diversity and niche partitioning in a species rich predator guild—natural variations in stable isotope ratios (13C/12C, 15N/14N) of mesostigmatid mites (Acari, Mesostigmata) from Central European beech forests. Soil Biol. Biochem. 57, 327–333 (2013).

    CAS  Article  Google Scholar 

  • 25.

    da Groot, A. G., Jagers op Akkerhuis, G. J. A. M., Dimmers, W. J., Charrier, X. & Faber, J. H. Biomass and diversity of soil mite functional groups respond to extensification of land management, potentially affecting soil ecosystem services. Front. Environ. Sci. 4, 1–15 (2016).

    Article  Google Scholar 

  • 26.

    Manu, M., Iordache, V., Băncilă, R. I., Bodescu, F. & Onete, M. The influence of environmental variables on soil mite communities (Acari: Mesostigmata) from overgrazed grassland ecosystems—Romania. Ital. J. Zool. 83, 89–97 (2016).

    CAS  Article  Google Scholar 

  • 27.

    Meehan, M. L., Zhuoyan Song, Z. & Proctor, H. Roles of environmental and spatial factors in structuring assemblages of forest-floor Mesostigmata in the boreal region of Northern Alberta, Canada. Int. J. Acarol. 44, 300–309 (2018).

    Article  Google Scholar 

  • 28.

    Kamczyc, J. et al. Response of soil mites (Acari, Mesostigmata) to long-term Norway spruce plantation along a mountain stream. Exp. Appl. Acarol. 76(1–3), 1–18 (2018).

    Google Scholar 

  • 29.

    Santorufo, L., Van Gestel, C. M., Rocco, A. & Maisto, G. Soil invertebrates as bioindicators of urban soil quality. Environ. Pollut. 161, 57–63 (2015).

    Article  CAS  Google Scholar 

  • 30.

    N’Dri, J. K., Hance, T., Andr,é, H. M., Lagerlöf, J. & Tondoh, J. E. Microarthropod use as bioindicators of the environmental state: Case of soil mites (Acari) from Côte d’Ivoire. J. Anim. Plant Sci. 29(2), 4622–4637 (2016).

    Google Scholar 

  • 31.

    George, P. B. L. et al. Evaluation of mesofauna communities as soil quality indicators in a national-level monitoring programme. Soil Biol. Biochem. 115, 537–546 (2017).

    CAS  Article  Google Scholar 

  • 32.

    Manu, M., Onete, M. & Băncilă, R. I. The effect of heavy metals on mite communities (Acari: Gamasina) from urban parks—Bucharest, Romania. Environ. Eng. Manag. J. 17(9), 2071–2081 (2018).

    CAS  Article  Google Scholar 

  • 33.

    Spiller, M. S., Spiller, C. & Garle, J. Arthropod bioindicators of environmental quality. Revista Agroambiente. 12(1), 41–57 (2018).

    Google Scholar 

  • 34.

    Niedbała, W., Błaszak, C., Błoszyk, J., Kaliszewski, M. & Kazmierski, A. Soils mites (Acari) of Warsaw and Mazovia. Memorabilia Zool. 36, 235–252 (1982).

    Google Scholar 

  • 35.

    Niedbała, W., Błoszyk, J., Kaliszewski, M., Kazmierski, A. & Olszanowski, Z. Structure of soil mite (Acari) communities in urban green of Warsaw. Fragmenta Faunistica. 33, 21–44 (1990).

    Article  Google Scholar 

  • 36.

    Pouyat, R. V., Parmelee, R. W. & Carreiro, M. M. Environmental effects of forest soil-invertebrate and fungal densities in oak stands along an urban-rural land use gradient. Pedobiologia 38, 385–399 (1994).

    CAS  Google Scholar 

  • 37.

    Minor, M. A. & Cianciolo, J. M. Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of use types in New York. Appl. Soil Ecol. 35, 140–153 (2007).

    Article  Google Scholar 

  • 38.

    Skorupski, M., Horodecki, P. & Jagodziński, A. M. Roztocze z rzędu Mesostigmata (Arachnida, Acari) na terenach przemysłowych i poprzemysłowych w Polsce. (Mite species of Mesostigmata order (Arachnida, Acari) in industrial and post-industrial areas of Poland). Nauka Przyr. Technol. 11, 1–23 (2013).

    Google Scholar 

  • 39.

    Minova, S., Jankevica, L., Salmane, I. & Èekstere, G. Preliminary studies on microbial biomass and the microarthropod community as soil health and quality indicators in urban grasslands, Rîga as an example. Proc. Latvian Acad. Sci. Sect. B. 69(3), 140–144 (2015).

    CAS  Google Scholar 

  • 40.

    Telnov, D. & Salmane, I. Ecology and diversity of urban pine forest soil invertebrates in Rîga, Latvia. Proc. Latvian Acad. Sci. Sect. B Nat. 69(3), 120–131 (2015).

  • 41.

    Napierała, A., Skwierczyñski, F. & Jankowiak, A. Materials to knowledge of Uropodina (Acari: Mesostigmata) of Poznań District. Badania Fizjograficzne R. I Seria C Zoologia. C51, 7–19 (2010).

  • 42.

    Kontschán, J., Ács, A., Wang, G. Q. & Neményi, A. New data to the mite fauna of Hungarian bamboo plantations. Acta Phytopathol. Entomol. Hung. 50(1), 77–83 (2015).

    Article  Google Scholar 

  • 43.

    Fend’a, P. & Hruzova, K. Mites (Acari, Mesostigmata) in urban green of Bratislava (Slovakia) In 8th Symposium of the European Association of Acarologist (ed Universitat Politecnica de Valencia) 41 (Book of Abstract, 2016).

  • 44.

    Hrúzová, K. & Fend’a, P. First record of Parasitus americanus (Berlese, 1905) and Cornigamasus ocliferius Skorupski and Witaliński, 1997 (Acari: Mesostigmata: Parasitidae) from Slovakia. Check List. 13(4), 239–243 (2017).

  • 45.

    Salmane, I. Soil microarthropods (Acari, Collembola) in the Rīga city habitats. Environ. Exp. Biol. 16, 73–74 (2018).

    Google Scholar 

  • 46.

    Błoszyk, J., Klimczak, I. & Leśniewska, M. Phoretic relationships between Uropodina (Acari: Mesostigmata) and centipedes (Chilopoda) as an example of evolutionary adaptation of mites to temporary microhabitats. Eur. J. Entomol. 103, 699–707 (2006).

    Article  Google Scholar 

  • 47.

    Napierała, A. et al. Phoretic relationships between uropodid mites (Acari: Mesostigmata) and centipedes (Chilopoda) in urban agglomeration areas. Int. J. Acarol. 41(4), 250–258 (2015).

    Article  Google Scholar 

  • 48.

    Mizser, S., Nagy, L. & Tóthmérész, B. Mite infection of Carabus violaceus in rural forest patches and urban parks. Period. Biol. 118(3), 307–309 (2016).

    Article  Google Scholar 

  • 49.

    Honciuc, V. & Manu, M. Ecological study on the edaphically mite’s populations (Acari: Mesostigmata—Gamasina: Oribatida) in urban areas from Romania. Rom. J. Biol. Zool. 55(1), 19–30 (2010).

    Google Scholar 

  • 50.

    Manu, M. & Honciuc, V. Rang correlations at the level of the predator and the decomposer populations soil mites (Acari: Mesostigmata-Gamasina, Oribatida) from central parks of Bucharest city, Romania. Acta Entomol. Serb. 5(1), 129–140 (2010).

    Google Scholar 

  • 51.

    Manu, M. & Honciuc, V. Ecological research on the soil mite’s populations (Acari: Mesostigmata-Gamasina, Oribatida) from forest ecosystems near Bucharest city. Rom. J. Biol. Zool. 55(1), 19–30 (2010).

    Google Scholar 

  • 52.

    Iojă, C. I., Rozylowicz, L., Pătroescu, M., Niţă, M. R. & Vânau, G. O. Dog walkers’ vs other park visitors’ perceptions: The importance of planning sustainable urban parks in Bucharest, Romania. Landsc. Urban. Plan. 103, 74–82 (2011).

    Article  Google Scholar 

  • 53.

    Pătroescu, M., Ioja, C., Necsuliu, R. & Brailescu, C. The quality of oxygenating surfaces. The green areas of Bucharest. A case studies. Rev. Roum. Geogr. 47–48, 205–216 (2004).

    Google Scholar 

  • 54.

    Trzyna, T. Urban Protected Areas: Profiles and best practice guidelines. Best Practice Protected Area Guidelines Series No. 22, Gland, Switzerland: IUCN (2014).

  • 55.

    Ghiliarov, M.S. & Bregetova, N.G. Opredeliteli obitayushchikh v pochve kleshcheĭ Mesostigmata. (Akademia Nauk USSR, Zoologicheskiĭ Institut Evolyucionoĭ Morfologii i Ekologii zhivotnikh im A.H. Savertova, Izd. Nauka, Leningrad, 1977).

  • 56.

    Hyatt, K. H. Mites of the subfamily Parasitinae (Mesostigmata: Parasitidae) in the British Isles. Bull. Br. Mus. Nat. Hist. Zool. 38, 237–378 (1980).

    Google Scholar 

  • 57.

    Karg, W. Acari (Acarina), Milben Parasitiformes (Anactinochaeta) Cohors Gamasina Leach. 59, 1–513 (1993).

  • 58.

    Mašán, P. Macrochelid Mites of Slovakia (Acari, Mesostigmata, Macrochelidae) (Institute of Zoology, Slovak Academy of Science, Bratislava, 2003).

  • 59.

    Mašán, P. Identification key to Central European species of Trachytes (Acari: Uropodina) with redescription, ecology and distribution of Slovak species. Eur. J. Entomol. 100, 435–448 (2003).

    Article  Google Scholar 

  • 60.

    Mašán, P. & Fenďa, P. Zerconid Mites of Slovakia (Acari, Mesostigmata, Zerconidae (Institute of Zoology, Slovakia Academy of Science, Bratislava, 2004).

    Google Scholar 

  • 61.

    Mašán, P. A Review of the Family Pachylaelapidae in Slovakia with Systematics and Ecology of European Species (Acari: Mesostigmata: Eviphidoidea) (Institute of Zoology, Slovak Academy of Science, Bratislava, 2007).

    Google Scholar 

  • 62.

    Mašán, P., Fenďa, P. & Mihál, I. New edaphic mites of the genus Veigaia from Slovakia and Bulgaria, with a key to the European species (Acari, Mesostigmata, Veigaiidae). Zootaxa. 1897, 1–19 (2008).

    Article  Google Scholar 

  • 63.

    Mášan, P. & Halliday, B. Review of the European genera of Eviphididae (Acari: Mesostigmata) and the species occurring in Slovakia. Zootaxa. 2585, 1–122 (2010).

    Article  Google Scholar 

  • 64.

    Oksanen, J., Blanchet, G.F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchi, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H., Szoecs, E., Wagner, H. Vegan: Community Ecology Package. R package version 2.4–0. https://cran.r-project.org/package=RVAideMemoire (2019).

  • 65.

    Herve, ́ M. RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R package version 0.9-66. https://CRAN.R-project.org/package=RVAideMemoire (2017).

  • 66.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information—Theoretic Approach (Springer, New York, 2002).

    Google Scholar 

  • 67.

    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).

    Google Scholar 

  • 69.

    Ruf, A. A maturity index for predatory soil mites (Mesostigmata, Gamasina) as an indicator of environmental impacts of pollution of forest soils. Appl. Soil Ecol. 9, 447–452 (1998).

    Article  Google Scholar 

  • 70.

    De Caceres, M., Legendre, P. Associations Between Species and Groups of Sites: Indices an Statistical Inference. Ecology. http://sites.google.com/site/miqueldecaceres (2009).

  • 71.

    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monog. 67(3), 345–366 (1997).

    Google Scholar 

  • 72.

    Zaharia, V. & Găitănaru, D. Aspects of water budget in Văcăreşti wetland. Math. Model. Civ. Eng. 14(1), 12–23 (2018).

    Article  Google Scholar 

  • 73.

    Xu, G.-L., Kuster, T. M., Günthardt-Goerg, M. S., Dobbertin, M. & Li, M.-H. Seasonal exposure to drought and air warming affects soil collembola and mites. PLoS ONE 7(8), e43102 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Gülser, C. & Candemir, F. Changes in penetration resistance of a clay field with organic waste applications. Eurasian J. Soil Sci. 1, 16–21 (2012).

    Google Scholar 

  • 75.

    Bergamin, A. C. et al. Relationship of soil physical quality parameters and maize yield in a Brazilian Oxisol. Chil. J. Agric. Res. 75(3), 357–365 (2015).

    Article  Google Scholar 

  • 76.

    Jones, M. F. & Arp, P. A. Relating cone penetration and rutting resistance to variations in forest soil properties and daily moisture fluctuations. Open J. Soil Sci. 7, 149–171 (2017).

    Article  Google Scholar 

  • 77.

    Ekschmitta, K., Liub, M., Vettera, S., Foxa, O. & Wolters, V. Strategies used by soil biota to overcome soil organic matter stability—why is dead organic matter left over in the soil?. Geoderma 128, 167–176 (2005).

    ADS  Article  Google Scholar 

  • 78.

    Gulvik, M. E., Błoszyk, J., Austad, I., Bajaczyk, R. & Piwczyński, D. Abundance and diversity of soil microarthropod communities related to different land use regime in a traditional farm in Western Norway. Pol. J. Ecol. 56(2), 273–288 (2008).

    Google Scholar 

  • 79.

    Newman, A. C. D. The significance of clays in agriculture and soils. Philos. Trans. R. Soc. Lond A. 311, 375–389 (1984).

    ADS  CAS  Article  Google Scholar 

  • 80.

    Shen, C. et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204–211 (2013).

    CAS  Article  Google Scholar 

  • 81.

    Lăcătuşu, R., Lăcătuşu, A. R., Lungu, M. & Breaban, I. G. Macro- and microelements abundance in some urban soils from Romania. Carpath. J. Earth Environ. Sci. 3(1), 75–83 (2008).

    Google Scholar 

  • 82.

    Chikoski, J. M., Ferguson, S. H. & Meyer, L. Effects of water addition on soil arthropods and soil characteristics in a precipitation-limited environment. Acta Oecol. 30, 203–211 (2006).

    ADS  Article  Google Scholar 

  • 83.

    Nitzu, E. et al. Scree habitats: Ecological function, species conservation and spatial-temporal variation in the arthropod community. Syst. Biodivers. 12(1), 65–75 (2014).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Predator-induced defence in a dinoflagellate generates benefits without direct costs

    Movement behavior of a solitary large carnivore within a hotspot of human-wildlife conflicts in India