in

European cephalopods distribution under climate-change scenarios

  • 1.

    SAUP. Sea Around Us. http://www.seaaroundus.org/data/ (2020).

  • 2.

    Coll, M., Navarro, J., Olson, R. J. & Christensen, V. Assessing the trophic position and ecological role of squids in marine ecosystems by means of food-web models. Deep Sea Res. Part II Top. Stud. Oceanogr. 95, 21–36 (2013).

    ADS  Article  Google Scholar 

  • 3.

    Hastie, L. et al. Cephalopods in the north-eastern Atlantic: Species, biogeography, ecology, exploitation and conservation. In Oceanography and Marine Biology (eds. Gibson, R., Atkinson, R. & Gordon, J.) vol. 20092725, 111–190 (CRC Press, Boca Raton, 2009).

  • 4.

    Piatkowski, U. & Pierce, G. J. Impact of cephalopods in the food chain and their interaction with the environment and fisheries: An overview. Fish. Res. 6, 5–10 (2001).

    Article  Google Scholar 

  • 5.

    Pierce, G. J. et al. A review of cephalopod–environment interactions in European Seas. Hydrobiologia 612, 49–70 (2008).

    Article  Google Scholar 

  • 6.

    André, J., Haddon, M. & Pecl, G. T. Modelling climate-change-induced nonlinear thresholds in cephalopod population dynamics. Glob. Change Biol. 16, 2866–2875 (2010).

    ADS  Article  Google Scholar 

  • 7.

    Jereb, P. et al. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooper. Res. Rep. 325, 1–360 (2015).

    Google Scholar 

  • 8.

    Sims, D. W., Genner, M. J., Southward, A. J. & Hawkins, S. J. Timing of squid migration reflects North Atlantic climate variability. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 2607–2611 (2001).

  • 9.

    Dorey, N. et al. Ocean acidification and temperature rise: Effects on calcification during early development of the cuttlefish Sepia officinalis. Mar. Biol. 160, 2007–2022 (2013).

    CAS  Article  Google Scholar 

  • 10.

    Rodhouse, P. G. K. et al. Environmental effects on cephalopod population dynamics. In Advances in Marine Biology vol. 67, 99–233 (Elsevier, Amsterdam, 2014).

  • 11.

    Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Otto, F. E. L., Frame, D. J., Otto, A. & Allen, M. R. Embracing uncertainty in climate change policy. Nat. Clim. Change 5, 917–920 (2015).

    ADS  Article  Google Scholar 

  • 13.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    ADS  CAS  Article  Google Scholar 

  • 14.

    van Vuuren, D. P. et al. The representative concentration pathways: An overview. Clim. Change 109, 5–31 (2011).

    ADS  Article  Google Scholar 

  • 15.

    Gissi, E. et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci. Total Environ. 755, 142564 (2021).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 16.

    Beaugrand, G. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Change 9, 237–243 (2019).

    ADS  Article  Google Scholar 

  • 17.

    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).

    PubMed  Article  Google Scholar 

  • 18.

    Vidal, E. A. G., DiMarco, F. P., Wormuth, J. H. & Lee, P. G. Influence of temperature and food availability on survival, growth and yolk utilization in hatchling squid. Bull. Mar. Sci. 71, 915–931 (2002).

    Google Scholar 

  • 19.

    Doubleday, Z. A. et al. Global proliferation of cephalopods. Curr. Biol. 26, R406–R407 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    van der Kooij, J., Engelhard, G. H. & Righton, D. A. Climate change and squid range expansion in the North Sea. J. Biogeogr. 43, 2285–2298 (2016).

    Article  Google Scholar 

  • 21.

    Jin, Y., Jin, X., Gorfine, H., Wu, Q. & Shan, X. Modeling the oceanographic impacts on the spatial distribution of common cephalopods during autumn in the yellow sea. Front. Mar. Sci. 7, (2020).

  • 22.

    Pang, Y. et al. Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fisheries management. Fish. Res. 208, 22–33 (2018).

    Article  Google Scholar 

  • 23.

    Le Marchand, M. et al. Climate change in the Bay of Biscay: Changes in spatial biodiversity patterns could be driven by the arrivals of southern species. Mar. Ecol. Prog. Ser. 647, 17–31 (2020).

    ADS  Article  Google Scholar 

  • 24.

    Lima, F. D., Ángeles-González, L. E., Leite, T. S. & Lima, S. M. Q. Global climate changes over time shape the environmental niche distribution of Octopus insularis in the Atlantic Ocean. Mar. Ecol. Prog. Ser. 652, 111–121 (2020).

    ADS  Article  Google Scholar 

  • 25.

    Xavier, J. C., Peck, L. S., Fretwell, P. & Turner, J. Climate change and polar range expansions: Could cuttlefish cross the Arctic?. Mar. Biol. 163, 78 (2016).

    Article  Google Scholar 

  • 26.

    Selig, E. R. et al. Mapping global human dependence on marine ecosystems. Conserv. Lett. 12, e12617 (2019).

    Article  Google Scholar 

  • 27.

    Blasiak, R. et al. Climate change and marine fisheries: Least developed countries top global index of vulnerability. PLoS ONE 12, e0179632 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    FAO. The State of Mediterranean and Black Sea Fisheries. (General Fisheries Commission for the Mediterranean, 2016).

  • 29.

    Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Sumaila, U. R. Projected change in global fisheries revenues under climate change. Sci. Rep. 6, 32607 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Badjeck, M.-C., Perry, A., Renn, S., Brown, D. & Poulain, F. The vulnerability of fishing-dependent economies to disasters. FAO Fish. Aquac. Circ. 1081, 1–19 (2013).

    Google Scholar 

  • 31.

    Allison, E. H. et al. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 10, 173–196 (2009).

    Article  Google Scholar 

  • 32.

    Adloff, F. et al. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 45, 2775–2802 (2015).

    Article  Google Scholar 

  • 33.

    Alexander, M. A. et al. Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans. Elementa Sci. Anthropocene 6, 9 (2018).

    Article  Google Scholar 

  • 34.

    Gaines, S. D. et al. Improved fisheries management could offset many negative effects of climate change. Sci. Adv. 4, eaao1378 (2018).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Pierce, G. J. et al. Status and trends of European cephalopod stocks. In ASC 2019 ICES Conference, Gothenburg, Sweden 1 (2019).

  • 36.

    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

    Article  Google Scholar 

  • 37.

    Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, New Haven, 1978).

    Google Scholar 

  • 38.

    Peterson, A. & Soberón, J. Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza e Conservação 10, 1–6 (2012).

    Article  Google Scholar 

  • 39.

    Colwell, R. K. & Rangel, T. F. Hutchinson’s duality: The once and future niche. Proc. Natl. Acad. Sci. 106, 19651–19658 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010).

    ADS  Article  Google Scholar 

  • 41.

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    PubMed  Article  Google Scholar 

  • 42.

    Hao, T., Elith, J., Guillera-Arroita, G. & Lahoz-Monfort, J. J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. https://doi.org/10.1111/ddi.12892 (2019).

    Article  Google Scholar 

  • 43.

    Goberville, E., Beaugrand, G., Hautekèete, N.-C., Piquot, Y. & Luczak, C. Uncertainties in the projection of species distributions related to general circulation models. Ecol. Evol. 5, 1100–1116 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Leroy, B. et al. Forecasted climate and land use changes, and protected areas: The contrasting case of spiders. Divers. Distrib. 20, 686–697 (2014).

    Article  Google Scholar 

  • 45.

    Schickele, A. et al. Modelling European small pelagic fish distribution: Methodological insights. Ecol. Model. 416, 108902 (2020).

    Article  Google Scholar 

  • 46.

    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Barbet-Massin, M., Thuiller, W. & Jiguet, F. How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models?. Ecography 33, 878–886 (2010).

    Article  Google Scholar 

  • 48.

    Beaugrand, G., Luczak, C., Goberville, E. & Kirby, R. Marine biodiversity and the chessboard of life. PLoS ONE 13, e0194006 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 49.

    Støa, B., Halvorsen, R., Mazzoni, S. & Gusarov, V. I. Sampling bias in presence-only data used for species distribution modelling: Theory and methods for detecting sample bias and its effects on models. Sommerfeltia 38, 1–53 (2018).

    Article  Google Scholar 

  • 50.

    Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).

    Article  Google Scholar 

  • 51.

    Voldoire, A. et al. The CNRM-CM5.1 global climate model: Description and basic evaluation. Clim. Dyn. 40, 2091–2121 (2013).

    Article  Google Scholar 

  • 52.

    Hourdin, F. et al. Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim. Dyn. 40, 2167–2192 (2013).

    Article  Google Scholar 

  • 53.

    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2013).

    ADS  Article  Google Scholar 

  • 54.

    Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: Assessing the assumptions and uncertainties. PNAS 106, 19729–19736 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 55.

    Martinez-Meyer, E. Climate change and biodiversity: Some considerations in forecasting shifts in species’ potential distributions. Biodivers. Inform. 2, 42–55 (2005).

    Article  Google Scholar 

  • 56.

    Levitus, S. Climatological atlas of the world ocean. Eos Trans. Am. Geophys. Union 64, 962–963 (2011).

    ADS  Article  Google Scholar 

  • 57.

    Cabanes, C. et al. The CORA dataset: Validation and diagnostics of in-situ ocean temperature and salinity measurements. Ocean Sci. 9, 1–18 (2013).

    ADS  Article  Google Scholar 

  • 58.

    Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5: Climate Changes in MPI-ESM. J. Adv. Model. Earth Syst. 5, 572–597 (2013).

    ADS  Article  Google Scholar 

  • 59.

    Stevens, B. et al. Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst. 5, 146–172 (2013).

    ADS  Article  Google Scholar 

  • 60.

    Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. Discuss. 4, 689–763 (2011).

    ADS  Google Scholar 

  • 61.

    Schmidt, G. A. et al. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive: GISS MODEL-E2 CMIP5 SIMULATIONS. J. Adv. Model. Earth Syst. 6, 141–184 (2014).

    ADS  Article  Google Scholar 

  • 62.

    Beaugrand, G., Lenoir, S., Ibañez, F. & Manté, C. A new model to assess the probability of occurrence of a species, based on presence-only data. Mar. Ecol. Prog. Ser. 424, 175–190 (2011).

    ADS  Article  Google Scholar 

  • 63.

    Raybaud, V., Bacha, M., Amara, R. & Beaugrand, G. Forecasting climate-driven changes in the geographical range of the European anchovy (Engraulis encrasicolus). ICES J. Mar. Sci. 74, 1288–1299 (2017).

    Article  Google Scholar 

  • 64.

    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).

    Article  Google Scholar 

  • 65.

    Thuiller, W., Georges, D., Engler, R. & Breiner, F. Ensemble Platform for Species Distribution Modelling. (2016).

  • 66.

    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Article  Google Scholar 

  • 67.

    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1198-2 (2020).

    Article  PubMed  Google Scholar 

  • 68.

    Smith, W. H. F. & Sandwell, D. T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277, 1956–1962 (1997).

    CAS  Article  Google Scholar 

  • 69.

    NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Distance to the nearest coast. https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/ (01/03/2018) (2009).

  • 70.

    Hattab, T. et al. Towards a better understanding of potential impacts of climate change on marine species distribution: A multiscale modelling approach. Glob. Ecol. Biogeogr. 23, 1417–1429 (2014).

    Article  Google Scholar 

  • 71.

    Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 1084–1091 (2014).

    Google Scholar 

  • 72.

    Ben Rais Lasram, F. et al. An open-source framework to model present and future marine species distributions at local scale. Ecol. Inform. 59, 101130 (2020).

    Article  Google Scholar 

  • 73.

    Montgomery, D. C. Design and Analysis of Experiments (Wiley, Hoboken, 2005).

    Google Scholar 

  • 74.

    Getz, W. M. & Wilmers, C. C. A local nearest-neighbor convex-hull construction of home ranges and utilization distributions. Ecography 27, 489–505 (2006).

    Article  Google Scholar 

  • 75.

    Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex hull volume. Ecology 87, 1465–1471 (2004).

    Article  Google Scholar 

  • 76.

    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).

    Article  Google Scholar 

  • 77.

    Leroy, B. et al. Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J. Biogeogr. 45, 1994–2002 (2018).

    Article  Google Scholar 

  • 78.

    Faillettaz, R., Beaugrand, G., Goberville, E. & Kirby, R. R. Atlantic Multidecadal Oscillations drive the basin-scale distribution of Atlantic bluefin tuna. Sci. Adv. 5, eaar6993 (2019).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Elith, J., Ferrier, S., Huettmann, F. & Leathwick, J. The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecol. Model. 186, 280–289 (2005).

    Article  Google Scholar 

  • 80.

    VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).

    ADS  Article  Google Scholar 

  • 81.

    Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106, 7183–7192 (2001).

    ADS  Article  Google Scholar 

  • 82.

    Cristofari, R. et al. Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nat. Clim. Change 8, 245–251 (2018).

    ADS  Article  Google Scholar 

  • 83.

    Péron, C., Weimerskirch, H. & Bost, C.-A. Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean. Proc. Biol. Sci. 279, 2515–2523 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 84.

    Bloor, I. S. M., Attrill, M. J. & Jackson, E. L. Chapter One—A Review of the Factors Influencing Spawning, Early Life Stage Survival and Recruitment Variability in the Common Cuttlefish (Sepia officinalis). In Advances in Marine Biology (ed. Lesser, M.) vol. 65, 1–65 (Academic Press, Cambridge, 2013).

  • 85.

    Vidal, E. A. G., Roberts, M. J. & Martins, R. S. Yolk utilization, metabolism and growth in reared Loligo vulgaris reynaudii paralarvae. Aquat. Living Resour. 18, 385–393 (2005).

    Article  Google Scholar 

  • 86.

    Bouchaud, O. Energy consumption of the cuttlefish Sepia officinalis L. (Mollusca: Cephalopoda) during embryonic development, preliminary results. Bull. Mar. Sci. 49, 333–340 (1991).

    Google Scholar 

  • 87.

    Laptikhovsky, V. Latitudinal and bathymetric trends in egg size variation: A new look at Thorson’s and Rass’s rules. Mar. Ecol. 27, 7–14 (2006).

    ADS  Article  Google Scholar 

  • 88.

    Hengl, T., Sierdsema, H., Radović, A. & Dilo, A. Spatial prediction of species’ distributions from occurrence-only records: Combining point pattern analysis, ENFA and regression-kriging. Ecol. Model. 220, 3499–3511 (2009).

    Article  Google Scholar 

  • 89.

    Clarke, M. R. The role of cephalopods in the world’s oceans: general conclusions and the future. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 351, 1105–1112 (1996).

    ADS  Article  Google Scholar 

  • 90.

    Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).

    Article  Google Scholar 

  • 91.

    Kissling, W. D. et al. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents: Modelling multispecies interactions. J. Biogeogr. 39, 2163–2178 (2012).

    Article  Google Scholar 

  • 92.

    Clark, J. S., Gelfand, A. E., Woodall, C. & Zhu, K. More than the sum of the parts: Forest climate response from joint species distribution models. Ecol. Appl. 24, 990–999 (2014).

    PubMed  Article  Google Scholar 

  • 93.

    Harris, D. J. Generating realistic assemblages with a joint species distribution model. Methods Ecol. Evol. 6, 465–473 (2015).

    Article  Google Scholar 

  • 94.

    Nogués-Bravo, D. Predicting the past distribution of species climatic niches. Glob. Ecol. Biogeogr. 18, 521–531 (2009).

    Article  Google Scholar 

  • 95.

    Lee, Q., Thorson, J. T., Gertseva, V. V. & Punt, A. E. The benefits and risks of incorporating climate-driven growth variation into stock assessment models, with application to Splitnose Rockfish (Sebastes diploproa). ICES J. Mar. Sci. 75, 245–256 (2018).

    Article  Google Scholar 

  • 96.

    Colléter, M., Gascuel, D., Ecoutin, J.-M. & Tito de Morais, L. Modelling trophic flows in ecosystems to assess the efficiency of marine protected area (MPA), a case study on the coast of Sénégal. Ecol. Model. 232, 1–13 (2012).

    Article  Google Scholar 

  • 97.

    Allen, K. R. Relation between production and biomass. J. Fish. Res. Board Can. 28, 1573–1581 (1971).

    Article  Google Scholar 

  • 98.

    FAO. Review of the state of world marine fishery resources. FAO Fish. Aquac. Tech. Pap. 334 (2011).

  • 99.

    Cheung, W. W. L. et al. Transform high seas management to build climate resilience in marine seafood supply. Fish Fish. 18, 254–263 (2016).

    Article  Google Scholar 

  • 100.

    Sumaila, U. R., Cheung, W. W. L., Lam, V. W. Y., Pauly, D. & Herrick, S. Climate change impacts on the biophysics and economics of world fisheries. Nat. Clim. Change 1, 449–456 (2011).

    ADS  Article  Google Scholar 

  • 101.

    Barange, M. et al. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4, 211–216 (2014).

    ADS  Article  Google Scholar 

  • 102.

    Ojea, E., Lester, S. E. & Salgueiro-Otero, D. Adaptation of fishing communities to climate-driven shifts in target species. One Earth 2, 544–556 (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Impacts of wildlife trade on terrestrial biodiversity

    Meet the research scientists behind MITEI’s Electric Power Systems Center