in

Antagonist effects of the leek Allium porrum as a companion plant on aphid host plant colonization

  • 1.

    Parolin, P. et al. Secondary plants used in biological control: a review. Int. J. Pest Manag. 58, 91–100 (2012).

    Article  Google Scholar 

  • 2.

    Parker, J. E., Snyder, W. E., Hamilton, G. C. & Rodriguez‐Saona, C. Companion planting and insect pest control. Weed and Pest Control – Conventional and New Challenges (2013). https://doi.org/10.5772/55044

  • 3.

    Held, D. W., Gonsiska, P. & Potter, D. A. Evaluating companion planting and non-host masking odors for protecting roses from the Japanese beetle (Coleoptera: Scarabaeidae). J. Econ. Entomol. 96, 81–87 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Togni, P. H. B., Laumann, R. A., Medeiros, M. A. & Suji, E. R. Odour masking of tomato volatiles by coriander volatiles in host plant selection of Bemisia tabaci biotype B. Entomol. Exp. Appl. 136, 164–173 (2010).

    Article  Google Scholar 

  • 5.

    Deletre, E. et al. Prospects for repellent in pest control: current developments and future challenges. Chemoecology 26, 127–142 (2016).

    CAS  Article  Google Scholar 

  • 6.

    Ben-Issa, R., Gomez, L. & Gautier, H. Companion plants for aphid pest management. Insects 8, 112 (2017).

    PubMed Central  Article  Google Scholar 

  • 7.

    Niemeyer, H. Secondary plant chemicals in aphid-host interactions. RK. RK Campbell RD Eikenbary Aphid-plant genotype Interact, 101–111 (1990).

  • 8.

    Powell, G., Tosh, C. R. & Hardie, J. HOST PLANT SELECTION BY APHIDS: behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51, 309–330 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Mansion-Vaquié, A., Ferrer, A., Ramon-Portugal, F., Wezel, A. & Magro, A. Intercropping impacts the host location behaviour and population growth of aphids. Entomol. Exp. Appl. 168, 41–52 (2020).

    Article  Google Scholar 

  • 10.

    Nottingham, S. F. et al. Behavioral and electrophysiological responses of Aphids to host and nonhost plant volatiles. J. Chem. Ecol. 17, 1231–1242 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Ben Issa, R., Gautier, H. & Gomez, L. Influence of neighbouring companion plants on the performance of aphid populations on sweet pepper plants under greenhouse conditions. Agric. For. Entomol. 19, 181–191 (2017).

    Article  Google Scholar 

  • 12.

    Hatt, S., Xu, Q., Francis, F. & Osawa, N. Aromatic plants of East Asia to enhance natural enemies towards biological control of insect pests. A review. Entomol. Gener. 38, 275–315 (2019).

    Article  Google Scholar 

  • 13.

    Basedow, T., Hua, L. & Aggarwal, N. The infestation of Vicia faba L. (Fabaceae) by Aphis fabae (Scop.) (Homoptera: Aphididae) under the influence of Lamiaceae (Ocimum basilicum L. and Satureja hortensis L.). J. Pest Sci. 79, 149 (2006).

    Article  Google Scholar 

  • 14.

    Beizhou, S. et al. Temporal dynamics of the arthropod community in pear orchards intercropped with aromatic plants. Pest Manag. Sci. 67, 1107–1114 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 15.

    Glinwood, R., Ninkovic, V., Pettersson, J. & Ahmed, E. Barley exposed to aerial allelopathy from thistles (Cirsium spp.) becomes less acceptable to aphids. Ecol. Entomol. 29, 188–195 (2004).

    Article  Google Scholar 

  • 16.

    Jankowska, B., Poniedziałek, M. & Jędrszczyk, E. Effect of intercropping white cabbage with French Marigold (Tagetes patula nana L.) and Pot Marigold (Calendula officinalis L.) on the colonization of plants by pest insects. Folia Hortic. 21, 95–103 (2009).

    Article  Google Scholar 

  • 17.

    Tang, G. B. et al. Repellent and attractive effects of herbs on insects in pear orchards intercropped with aromatic plants. Agroforest. Syst. 87, 273–285 (2013).

    Article  Google Scholar 

  • 18.

    de Lima, J. S. S. et al. Agroeconomic evaluation of intercropping rocket and carrot by uni- and multivariate analyses in a semi-arid region of Brazil. Ecol. Ind. 41, 109–114 (2014).

    Article  Google Scholar 

  • 19.

    Sujayanand, G. K., Sharma, R. K., Shankarganesh, K., Saha, S. & Tomar, R. S. Crop diversification for sustainable insect pest management in eggplant (Solanales: Solanaceae). Fla. Entomol. 98, 305–314 (2015).

    Article  Google Scholar 

  • 20.

    McCall, P. J. & Eaton, G. Olfactory memory in the mosquito Culex quinquefasciatus. Med. Vet. Entomol. 15, 197–203 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Little, C. M., Chapman, T. W. & Hillier, N. K. Considerations for insect learning in integrated pest management. J. Insect Sci. 19, 6 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Bandara, K. A. N. P. et al. Can leek interfere with bean plant-bean fly interaction? Test of ecological pest management in mixed cropping. J. Econ. Entomol. 102, 999–1008 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Mutiga, S. K., Gohole, L. S. & Auma, E. O. Effects of integrating companion cropping and nitrogen application on the performance and infestation of collards by Brevicoryne brassicae. Entomol. Exp. Appl. 134, 234–244 (2010).

    CAS  Article  Google Scholar 

  • 24.

    Dugravot, S., Thibout, E., Abo-Ghalia, A. & Huignard, J. How a specialist and a non-specialist insect cope with dimethyl disulfide produced by Allium porrum. Neth. Entomol. Soc. Entomol. Exp. Appl. 113, 173–179 (2004).

    Article  Google Scholar 

  • 25.

    Thibout, E. & Auger, J. Composés soufrés des Allium et lutte contre les insectes. Acta Bot. Gallica 144, 419–426 (1997).

    Article  Google Scholar 

  • 26.

    Auger, J., Dugravot, S., Naudin, A. & Abo-Ghalia, A. Utilisation des composes allelochimiques des Allium en tant qu’insecticides. Use of pheromones and other semiochemicals in integrated production IOBC wprs Bulletin Vol. 25, 13 (2002).

  • 27.

    Amarawardana, L. et al. Olfactory response of Myzus persicae (Homoptera: Aphididae) to volatiles from leek and chive: potential for intercropping with sweet pepper. Acta Agric. Scand. Sect. B – Soil Plant Sci. 57, 87–91 (2007).

    Google Scholar 

  • 28.

    Zhou, H. et al. Influence of garlic intercropping or active emitted volatiles in releasers on aphid and related beneficial in wheat fields in China. J. Integr. Agric. 12, 467–473 (2013).

    Article  Google Scholar 

  • 29.

    Mauck, K. E., De Moraes, C. M. & Mescher, M. C. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sci. USA 107, 3600–3605 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Tjallingii, W. F. Electrical recording of stylet penetration activities. In Aphids, Their Biology, Natural Enemies and Control (eds Minks, A. K. & Harrewijn, P.) 95–108 (Elsevier, Amsterdam, 1988).

    Google Scholar 

  • 31.

    Tjallingii, W. F. Electronic recording of penetration behaviour by aphids. Entomol. Exp. Appl. 24, 721–730 (1978).

    Article  Google Scholar 

  • 32.

    Giordanengo, P. EPG-Calc: a PHP-based script to calculate electrical penetration graph (EPG) parameters. Arthropod-Plant Interact. 8, 163–169 (2014).

    Article  Google Scholar 

  • 33.

    MacGillivray, M. E. & Anderson, G. B. Three useful insect cages. Can. Entomol. 89, 43–46 (1957).

    Article  Google Scholar 

  • 34.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2014).

    Google Scholar 

  • 35.

    Järvenpää, E. P., Zhang, Z., Huopalahti, R. & King, J. W. Determination of fresh onion (Allium cepa L.) volatiles by solid phase microextraction combined with gas chromatography-mass spectrometry. Z. Lebensm Unters Forsch 207, 39–43 (1998).

    Article  Google Scholar 

  • 36.

    Løkke, M. M., Edelenbos, M., Larsen, E. & Feilberg, A. Investigation of volatiles emitted from freshly cut onions (Allium cepa L.) by real time proton-transfer reaction-mass spectrometry (PTR-MS) . Sensors 12, 16060–16076 (2012).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 37.

    Camacho-Coronel, X., Molina-Torres, J. & Heil, M. Sequestration of exogenous volatiles by plant cuticular waxes as a mechanism of passive associational resistance: a proof of concept. Front. Plant Sci. 11, 121 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Himanen, S. J. et al. Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants—a mechanism for associational herbivore resistance?. New Phytol. 186, 722–732 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Dahlin, I., Vucetic, A. & Ninkovic, V. Changed host plant volatile emissions induced by chemical interaction between unattacked plants reduce aphid plant acceptance with intermorph variation. J Pest Sci 88, 249–257 (2015).

    Article  Google Scholar 

  • 40.

    Dardouri, T. et al. Non-host volatiles disturb the feeding behavior and reduce the fecundity of the green peach aphid, Myzus persicae. Pest Manag Sci. https://doi.org/10.1002/ps.6190 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Dancewicz, K., Gabryś, B. & Przybylska, M. Effect of garlic (Allium sativum L.) and tansy (Tanaceum vulgare L.) extracts and potassic horticultural soap on the probing and feeding behaviour of Myzus persicae (Sulzer, 1776). Aphids Other Homopterous Insects 17, 126–136 (2011).

    Google Scholar 

  • 42.

    Chyb, S., Eichenseer, H., Hollister, B., Mullin, C. A. & Frazier, J. L. Identification of sensilla involved in taste mediation in adult western corn rootworm (Diabrotica virgifera virgifera LeConte). J. Chem. Ecol. 21, 313–329 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Prado, E. & Tjallingii, W. F. Effects of previous plant infestation on sieve element acceptance by two aphids. Entomol. Exp. Appl. 82, 189–200 (1997).

    Article  Google Scholar 

  • 44.

    Sauge, M.-H., Lacroze, J.-P., Poëssel, J.-L., Pascal, T. & Kervella, J. Induced resistance by Myzus persicae in the peach cultivar ‘Rubira’. Entomol. Exp. Appl. 102, 29–37 (2002).

    Article  Google Scholar 

  • 45.

    Tolosa, T. A. et al. Molasses grass induces direct and indirect defense responses in neighbouring maize plants. J. Chem. Ecol. 45, 982–992 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Ninkovic, V., Rensing, M., Dahlin, I. & Markovic, D. Who is my neighbor? Volatile cues in plant interactions. Plant Signal Behav. 14, 1634993 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 47.

    Karban, R., Yang, L. H. & Edwards, K. F. Volatile communication between plants that affects herbivory: a meta-analysis. Ecol. Lett. 17, 44–52 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Kumar, P., Mishra, S., Malik, A. & Satya, S. Insecticidal properties of Mentha species: a review. Ind. Crops Prod. 34, 802–817 (2011).

    CAS  Article  Google Scholar 

  • 49.

    Nuñez-Mejía, G., Valadez-Lira, J. A., Gomez-Flores, R., Rodríguez-Padilla, C. & Tamez-Guerra, P. Trichoplusia ni (Lepidoptera: Noctuidae) survival, immune response, and gut bacteria changes after exposure to Azadirachta indica (Sapindales: Meliaceae) volatiles. Fla. Entomol. 99, 12–20 (2016).

    Article  Google Scholar 

  • 50.

    Regnault-Roger, C., Vincent, C. & Arnason, J. T. Essential oils in insect control: low-risk products in a high-stakes world. Annu. Rev. Entomol. 57, 405–424 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Sousa, R. M. O. F., Rosa, J. S., Oliveira, L., Cunha, A. & Fernandes-Ferreira, M. Activities of Apiaceae essential oils and volatile compounds on hatchability, development, reproduction and nutrition of Pseudaletia unipuncta (Lepidoptera: Noctuidae). Ind. Crops Prod. 63, 226–237 (2015).

    CAS  Article  Google Scholar 

  • 52.

    Petrakis, E. A. et al. Responses of Myzus persicae (Sulzer) to three Lamiaceae essential oils obtained by microwave-assisted and conventional hydrodistillation. Ind. Crops Prod. 62, 272–279 (2014).

    CAS  Article  Google Scholar 

  • 53.

    Poorjavad, N., Goldansaz, S. H., Dadpour, H. & Khajehali, J. Effect of Ferula assafoetida essential oil on some biological and behavioral traits of Trichogramma embryophagum and T. evanescens. Biocontrol 59, 403–413 (2014).

    CAS  Article  Google Scholar 

  • 54.

    Vázquez-Covarrubias, D. A., Jiménez-Pérez, A., Castrejón-Ayala, F., Figueroa-Brito, R. & Belmont, R. M. Effects of five species of Chenopodiaceae on the development and reproductive potential of Copitarsia decolora (Lepidoptera: Noctuidae). Fla. Entomol. 98, 80–85 (2015).

    Article  Google Scholar 

  • 55.

    Bharti, G., Prasad, S. & Upadhyay, V. B. The influence of plant volatile of Allium sativum on the reproductive ability of multivoltine mulberry silkworm Bombyx mori Linn. Afr. J. Basic Appl. Sci. 5(6), 242–249 (2013).

    Google Scholar 

  • 56.

    Ameline, A., Couty, A., Martoub, M., Sourice, S. & Giordanengo, P. Modification of Macrosiphum euphorbiae colonisation behaviour and reproduction on potato plants treated by mineral oil. Entomol. Exp. Appl. 135, 77–84 (2010).

    Article  Google Scholar 

  • 57.

    Calabrese, E. J. Hormesis: why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 27, 1451–1474 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Ayyanath, M.-M., Cutler, G. C., Scott-Dupree, C. D. & Sibley, P. K. Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid. PLoS ONE 8, e74532 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Yu, Y., Shen, G., Zhu, H. & Lu, Y. Imidacloprid-induced hormesis on the fecundity and juvenile hormone levels of the green peach aphid Myzus persicae (Sulzer). Pestic. Biochem. Physiol. 98, 238–242 (2010).

    CAS  Article  Google Scholar 

  • 60.

    Stephens, D. W. Learning and behavioral ecology: incomplete information and environmental predictability. In Insect Learning: Ecology and Evolutionary Perspectives (eds Papaj, D. R. & Lewis, A. C.) 195–218 (Springer, New York, 1993).

    Google Scholar 

  • 61.

    Bedini, S. et al. Allium sativum, Rosmarinus officinalis, and Salvia officinalis essential oils: a spiced shield against blowflies. Insects 11, 143 (2020).

    PubMed Central  Article  Google Scholar 

  • 62.

    Shi, J. et al. Laboratory evaluation of acute toxicity of the essential oil of Allium tuberosum leaves and its selected major constituents against Apolygus lucorum (Hemiptera: Miridae). J. Insect Sci. 15, 117 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Meet the research scientists behind MITEI’s Electric Power Systems Center

    Lifestyle of sponge symbiont phages by host prediction and correlative microscopy