in

Climate change threatens Chinook salmon throughout their life cycle

  • 1.

    Nicola, G. G., Elvira, B., Jonsson, B., Ayllon, D. & Almodovar, A. Local and global climatic drivers of Atlantic salmon decline in southern Europe. Fish. Res. 198, 78–85 (2018).

    Article  Google Scholar 

  • 2.

    Peterman, R. M. & Dorner, B. A widespread decrease in productivity of Sockeye Salmon (Oncorhynchus nerka) populations in western North America. Canadian J. Fisheries Aquatic Sci. 69, 1255–1260 (2012).

  • 3.

    Chaput, G. Overview of the status of Atlantic salmon (Salmo salar) in the North Atlantic and trends in marine mortality. ICES J. Mar. Sci. 69, 1538–1548 (2012).

    Article  Google Scholar 

  • 4.

    Mills, K. E., Pershing, A. J., Sheehan, T. F. & Mountain, D. Climate and ecosystem linkages explain widespread declines in North American Atlantic salmon populations. Glob. Chang Biol. 19, 3046–3061 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Ward, E. J., Anderson, J. H., Beechie, T. J., Pess, G. R. & Ford, M. J. Increasing hydrologic variability threatens depleted anadromous fish populations. Glob. Chang Biol. 21, 2500–2509 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Galbreath, P. F., Bisbee, M. A., Dompier, D. W., Kamphaus, C. M. & Newsome, T. H. Extirpation and tribal reintroduction of Coho salmon to the interior Columbia River basin. Fisheries 39, 77–87 (2014).

    Article  Google Scholar 

  • 7.

    Wasser, S. K. et al. Population growth is limited by nutritional impacts on pregnancy success in endangered Southern Resident killer whales (Orcinus orca). PLoS ONE 12, 0179824 (2017).

    Article  CAS  Google Scholar 

  • 8.

    NMFS, National Marine Fisheries Service. West Coast salmon & steelhead listings. NOAA Fisheries West Coast Region. www.westcoast.fisheries.noaa.gov/protected_species/salmon_steelhead/salmon_and_steelhead_listings/salmon_and_steelhead_listings.html (2014).

  • 9.

    NRC, Committee on Protection and Management of Pacific Northwest Anadromous Salmonids. Upstream: salmon and society in the Pacific Northwest. Vol. Board on Environmental Studies and Toxicology. Commission on Life Sciences (National Academies Press, 1996).

  • 10.

    Lehnert, S. J. et al. Genomic signatures and correlates of widespread population declines in salmon. Nat. Commun. 10, 10 (2019).

    Article  CAS  Google Scholar 

  • 11.

    Cunningham, C. J., Westley, P. A. H. & Adkison, M. D. Signals of large scale climate drivers, hatchery enhancement, and marine factors in Yukon River Chinook salmon survival revealed with a Bayesian life history model. Glob. Change Biol. 24, 4399–4416 (2018).

    Article  Google Scholar 

  • 12.

    Abdul-Aziz, O. I., Mantua, N. J. & Myers, K. W. Potential climate change impacts on thermal habitats of Pacific salmon (Oncorhynchus spp.) in the North Pacific Ocean and adjacent seas. Can. J. Fish. Aquat. Sci. 68, 1660–1680 (2011).

    Article  Google Scholar 

  • 13.

    Hare, J. A. et al. A vulnerability assessment of fish and invertebrates to climate change on the northeast U.S. continental shelf. PLoS ONE 11, e0146756 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 14.

    Crozier, L. G. et al. Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem. PLoS ONE 14, e0217711 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Healey, M. The cumulative impacts of climate change on Fraser River sockeye salmon (Oncorhynchus nerka) and implications for management. Can. J. Fish. Aquat. Sci. 68, 718–737 (2011).

    Article  Google Scholar 

  • 16.

    Honea, J. M., McClure, M. M., Jorgensen, J. C. & Scheuerell, M. D. Assessing freshwater life-stage vulnerability of an endangered Chinook salmon population to climate change influences on stream habitat. Clim. Res. 71, 127–137 (2017).

    Article  Google Scholar 

  • 17.

    Battin, J. et al. Projected impacts of climate change on salmon habitat restoration. Proc. Natl Acad. Sci. USA 104, 6720–6725 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Thompson, L. C. et al. Water management adaptations to prevent loss of spring-run Chinook Salmon in California under climate change. J. Water Resour. Plan. Manag. 138, 465–478 (2012).

    Article  Google Scholar 

  • 19.

    Cheung, W. W. L., Brodeur, R. D., Okey, T. A. & Pauly, D. Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas. Prog. Oceanogr. 130, 19–31 (2015).

    Article  Google Scholar 

  • 20.

    Morley, J. W. et al. Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS ONE 13, e0196127 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 21.

    Burke, B. J. et al. Multivariate models of adult Pacific salmon returns. PLoS ONE 8, e54134 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Newman, M. et al. The Pacific decadal oscillation, revisited. J. Clim. 29, 4399–4427 (2016).

    Article  Google Scholar 

  • 23.

    Achuthavarier, D., Schubert, S. D. & Vikhliaev, Y. V. North Pacific decadal variability: insights from a biennial ENSO environment. Clim. Dyn. 49, 1379–1397 (2017).

    Article  Google Scholar 

  • 24.

    Crozier, L. G. et al. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evolut. Appl. 1, 252–270 (2008).

    CAS  Article  Google Scholar 

  • 25.

    Litzow, M. A. et al. Non-stationary climate-salmon relationships in the Gulf of Alaska. Proc. R. Soc. B-Biol. Sci. 285, 9 (2018).

    Google Scholar 

  • 26.

    O’Connor, C. M., Norris, D. R., Crossin, G. T. & Cooke, S. J. Biological carryover effects: linking common concepts and mechanisms in ecology and evolution. Ecosphere 5, 1–11 (2014).

  • 27.

    Carlson, S. M. & Seamons, T. R. A review of quantitative genetic components of fitness in salmonids: implications for adaptation to future change. Evol. Appl. 1, 222–238 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Munsch, S. H. et al. Warm, dry winters truncate timing and size distribution of seaward-migrating salmon across a large, regulated watershed. Ecol. Appl. 29, 14 (2019).

    Article  Google Scholar 

  • 29.

    Otero, J. et al. Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Glob. Change Biol. 20, 61–75 (2014).

    Article  Google Scholar 

  • 30.

    Crozier, L. G., Scheuerell, M. D. & Zabel, R. W. Using time series analysis to characterize evolutionary and plastic responses to environmental change: A case study of a shift toward earlier migration date in sockeye salmon. Am. Naturalist 178, 755–773 (2011).

    Article  Google Scholar 

  • 31.

    Gosselin, J. L. et al. Conservation planning for freshwater-marine carryover effects on Chinook salmon survival. Ecol. Evolution 8, 319–332 (2018).

    Article  Google Scholar 

  • 32.

    United States v. Oregon. 2018-2027 United States v. Oregon Management Agreement. Case 3:68-cv-00513-MO Document 2607-1. (2018).

  • 33.

    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, 2014).

  • 34.

    IPCC. The Ocean and Cryosphere in a Changing Climate. A Special Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/srocc/ (2019).

  • 35.

    USGCRP, U.S. Global Change Research Program. Climate Science Special Report: Fourth National Climate Assessment, Volume I. (U.S. Global Change Research Program, 2017).

  • 36.

    Gosselin, J. L., Crozier, L. G. & Burke, B. J. Shifting signals: Correlations among freshwater, marine and climatic indices often investigated in Pacific salmon studies. Ecological Indicators, 121, 107167 https://doi.org/10.1016/j.ecolind.2020.107167 (2021).

    Article  Google Scholar 

  • 37.

    Crozier, L. G., Zabel, R. W. & Hamlett, A. F. Predicting differential effects of climate change at the population level with life-cycle models of spring Chinook salmon. Glob. Change Biol. 14, 236–249 (2008).

    Article  Google Scholar 

  • 38.

    Zabel, R. W., Scheuerell, M. D., McClure, M. M. & Williams, J. G. The interplay between climate variability and density dependence in the population viability of Chinook salmon. Conserv. Biol. 20, 190–200 (2006).

    PubMed  Article  Google Scholar 

  • 39.

    Ford, M. J. et al. 2015 Status Review Update for Pacific Salmon and Steelhead Listed under the Endangered Species Act: Pacific Northwest. National Marine Fisheries Service, Northwest Fisheries Science Center. https://www.nwfsc.noaa.gov/publications/scipubs/display_doctrack_allinfo.cfm?doctrackmetadataid=8623 (2016).

  • 40.

    NMFS, National Marine Fisheries Service. Endangered Species Act Section 7(a)(2) Biological Opinion and Magnuson-Stevens Fishery Conservation and Management Act Essential Fish Habitat Consultation. Consultation for the Continued Operation and Maintenance of the Columbia River System. NMFS, Portland, Oregon. https://doi.org/10.25923/3tce-8p07. Report No. Consultation number: WCRO-2020-00113 (2020).

  • 41.

    Doney, S. C. et al. Climate Change Impacts on Marine Ecosystems. Annual Review of Marine Science, 4, 11–37 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Waples, R. S. Pacific salmon, Oncorhynchus spp., and the definition of “species” under the endangered species act. Marine Fisheries Rev. 53, 11–22 (1991).

  • 44.

    Waples, R. S. Life-history traits and effective population size in species with overlapping generations revisited: the importance of adult mortality. Heredity 117, 241–250 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    ICTRT & Zabel, R. W. Required survival rate changes to meet Technical Recovery Team abundance and productivity viability criteria for interior Columbia River basin salmon and steelhead populations. http://www.nwfsc.noaa.gov/trt/col_docs/ictrt_gaps_report_nov_2007_final.pdf (NWFSC, Seattle, Washington, 2007).

  • 46.

    Scheuerell, M. D., Zabel, R. W. & Sandford, B. P. Relating juvenile migration timing and survival to adulthood in two species of threatened Pacific salmon (Oncorhynchus spp.). J. Appl. Ecol. 46, 983–990 (2009).

    Article  Google Scholar 

  • 47.

    Crozier, L. G. et al. Snake River sockeye and Chinook salmon in a changing climate: implications for upstream migration survival during recent extreme and future climates. PLoS ONE 15, e0238886 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    McElhany, P., Ruckelshaus, M. H., Ford, M. J., Wainwright, T. C. & Bjorkstedt, E. P. Viable Salmonid Populations and the recovery of Evolutionarily Significant Units. Report No. Technical Memorandum NMFS-NWFSC 42, 156 (National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA, 2000).

  • 49.

    Jorgensen, J. C., Ward, E. J., Scheuerell, M. D. & Zabel, R. W. Assessing spatial covariance among time series of abundance. Ecol. Evol. 6, 2472–2485 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Ohlberger, J., Scheuerell, M. D. & Schindler, D. E. Population coherence and environmental impacts across spatial scales: a case study of Chinook salmon. Ecosphere 7, e01333 (2016).

  • 51.

    Zimmerman, M. S. et al. Spatial and temporal patterns in smolt survival of wild and hatchery coho salmon in the Salish Sea. Mar. Coast. Fish. 7, 116–134 (2015).

    Article  Google Scholar 

  • 52.

    Welch, D. W., Porter, A. D. & Rechisky, E. L. A synthesis of the coast‐wide decline in survival of West Coast Chinook Salmon (Oncorhynchus tshawytscha, Salmonidae). Fish Fish. 22, 194–211 (2021).

  • 53.

    Dorner, B., Catalano, M. J. & Peterman, R. M. Spatial and temporal patterns of covariation in productivity of Chinook salmon populations of the northeastern Pacific Ocean. Can. J. Fish. Aquat. Sci. 75, 1082–1095 (2018).

    Article  Google Scholar 

  • 54.

    Black, B. A. et al. Rising synchrony controls western North American ecosystems. Glob. Change Biol. 24, 2305–2314 (2018).

    Article  Google Scholar 

  • 55.

    Jones, L. A. et al. Watershed-scale climate influences productivity of Chinook salmon populations across southcentral Alaska. Glob. Change Biol. 26, 4919–4936 (2020).

  • 56.

    Cline, T. J., Ohlberger, J. & Schindler, D. E. Effects of warming climate and competition in the ocean for life-histories of Pacific salmon. Nat. Ecol. Evol. 3, 935–942 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Litzow, M. A., Ciannelli, L., Cunningham, C. J., Johnson, B. & Puerta, P. Nonstationary effects of ocean temperature on Pacific salmon productivity. Can. J. Fish. Aquat. Sci. 76, 1923–1928 (2019).

    Article  Google Scholar 

  • 58.

    Johnstone, J. A. & Mantua, N. J. Atmospheric controls on northeast Pacific temperature variability and change, 1900-2012. Proc. Natl Acad. Sci. USA 111, 14360–14365 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Lindenmayer, D. B., Likens, G. E., Krebs, C. J. & Hobbs, R. J. Improved probability of detection of ecological “surprises”. Proc. Natl Acad. Sci. USA 107, 21957–21962 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Ottersen, G., Kim, S., Huse, G., Polovina, J. J. & Stenseth, N. C. Major pathways by which climate may force marine fish populations. J. Mar. Syst. 79, 343–360 (2010).

    Article  Google Scholar 

  • 61.

    Chasco, B. E. et al. Competing tradeoffs between increasing marine mammal predation and fisheries harvest of Chinook salmon. Sci. Rep. 7, 15439 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 62.

    Ruzicka, J. J., Daly, E. A. & Brodeur, R. D. Evidence that summer jellyfish blooms impact Pacific Northwest salmon production. Ecosphere 7, https://doi.org/10.1002/ecs2.1324 (2016).

  • 63.

    Morgan, C. A., Beckman, B. R., Weitkamp, L. A. & Fresh, K. L. Recent ecosystem disturbance in the Northern California current. Fisheries 44, 465–474 (2019).

    Article  Google Scholar 

  • 64.

    Auth, T. D., Daly, E. A., Brodeur, R. D. & Fisher, J. L. Phenological and distributional shifts in ichthyoplankton associated with recent warming in the northeast Pacific Ocean. Glob. Change Biol. 24, 259–272 (2018).

    Article  Google Scholar 

  • 65.

    Zeidberg, L. D. & Robison, B. H. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. Proc. Natl Acad. Sci. USA 104, 12948–12950 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Wells, B. K. et al. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival. J. Mar. Syst. 174, 54–63 (2017).

    Article  Google Scholar 

  • 67.

    Marshall, K. N. et al. Risks of ocean acidification in the California Current food web and fisheries: Ecosystem model projections. Glob. Change Biol. 23, 1525–1539 (2017).

    Article  Google Scholar 

  • 68.

    Ou, M. et al. Responses of pink salmon to CO2-induced aquatic acidification. Nat. Clim. Change 5, 950–955 (2015).

  • 69.

    Williams, C. R. et al. Elevated CO2 impairs olfactory-mediated neural and behavioral responses and gene expression in ocean-phase coho salmon (Oncorhynchus kisutch). Glob. Change Biol. 25, 963–977 (2019).

  • 70.

    Chegwidden, O. S. et al. How do modeling decisions affect the spread among hydrologic climate change projections? Exploring a large ensemble of simulations across a diversity of hydroclimates. Earth’s Future 7, 623–637 (2019).

  • 71.

    Paulsen, C. M. & Fisher, T. R. Statistical relationship between parr-to-smolt survival of Snake River spring-summer Chinook salmon and indices of land use. Trans. Am. Fish. Soc. 130, 347–358 (2001).

    Article  Google Scholar 

  • 72.

    Justice, C., White, S. M., McCullough, D. A., Graves, D. S. & Blanchard, M. R. Can stream and riparian restoration offset climate change impacts to salmon populations? J. Environ. Manag. 188, 212–227 (2017).

    Article  Google Scholar 

  • 73.

    Andrews, K. S. et al. The legacy of a crowded ocean: indicators, status, and trends of anthropogenic pressures in the California Current ecosystem. Environ. Conserv. 42, 139–151 (2015).

    Article  Google Scholar 

  • 74.

    Harvey, C. J. et al. Ecosystem status report of the California current for 2019: a summary of Ecosystem indicators compiled by the california current integrated ecosystem assessment team (CCIEA). NOAA Institutional Repository: https://doi.org/10.25923/mvhf-yk36, https://doi.org/10.25923/p0ed-ke21 (2019).

  • 75.

    Harvey, C. J., Reum, J. C. P., Poe, M. R., Williams, G. D. & Kim, S. J. Using conceptual models and qualitative network models to advance integrative assessments of marine ecosystems. Coast. Manag. 44, 486–503 (2016).

    Article  Google Scholar 

  • 76.

    Wells, B. K. et al. Implementing ecosystem-based management principles in the design of a Salmon ocean ecology program. Front. Marine Sci. 7, https://doi.org/10.3389/fmars.2020.00342 (2020).

  • 77.

    Adams, J. et al. A century of Chinook salmon consumption by marine mammal predators in the Northeast Pacific Ocean. Ecol. Inform. 34, 44–51 (2016).

    Article  Google Scholar 

  • 78.

    Thorne, K. et al. U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 4, eaao3270 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Weitkamp, L. A., Bentley, P. J. & Litz, M. N. C. Seasonal and interannual variation in juvenile salmonids and associated fish assemblage in open waters of the lower Columbia River estuary. Fish. Bull. 110, 426–450 (2012).

    Google Scholar 

  • 80.

    Diefenderfer, H. L. et al. Evidence-based evaluation of the cumulative effects of ecosystem restoration. Ecosphere 7, https://doi.org/10.1002/ecs2.1242 (2016).

  • 81.

    Kaplan, I. C. et al. Impacts of depleting forage species in the California current. Environ. Conserv. 40, 380–393 (2013).

    Article  Google Scholar 

  • 82.

    Collie, J. S. et al. Ecosystem models for fisheries management: finding the sweet spot. Fish. Fish. 17, 101–125 (2016).

    Article  Google Scholar 

  • 83.

    Skalski, J. R. et al. Status after 5 years of survival compliance testing in the federal Columbia river power system (FCRPS). North Am. J. Fish. Manag. 36, 720–730 (2016).

    Article  Google Scholar 

  • 84.

    Welch, D. W. et al. Survival of migrating salmon smolts in large rivers with and without dams. PLoS Biol. 6, 2101–2108 (2008).

    CAS  Google Scholar 

  • 85.

    Environmental Protection Agency U.S.A. Region 10. Total Maximum Daily Load (TMDL) for Temperature in the Columbia and Lower Snake Rivers, May 18, 2020 TMDL for Public Comment. Available at: https://www.epa.gov/columbiariver/tmdl-temperature-columbia-and-lower-snake-rivers (2020).

  • 86.

    Gosselin, J. L. & Anderson, J. J. Combining migration history, river conditions, and fish condition to examine cross-life-stage effects on marine survival in Chinook Salmon. Trans. Am. Fish. Soc. 146, 408–421 (2017).

    Article  Google Scholar 

  • 87.

    Zabel, R. W. & Williams, J. G. Selective mortality in chinook salmon: what is the role of human disturbance? Ecol. Appl. 12, 173–183 (2002).

    Article  Google Scholar 

  • 88.

    Bond, M. H., Nodine, T. G., Beechie, T. J. & Zabel, R. W. Estimating the benefits of widespread floodplain reconnection for Columbia River Chinook salmon. Can. J. Fish. Aquat. Sci. 76, 1212–1226 (2019).

    Article  Google Scholar 

  • 89.

    National Marine Fisheries Service, W. C. R. ESA recovery plan for Snake river sockeye salmon (Oncorhynchus nerka). https://repository.library.noaa.gov/view/noaa/16001 (2015).

  • 90.

    Hinrichsen, R. A., Hasselman, D. J., Ebbesmeyer, C. C. & Shields, B. A. The role of impoundments, temperature, and discharge on colonization of the Columbia River basin, USA, by nonindigenous American Shad. Trans. Am. Fish. Soc. 142, 887–900 (2013).

    Article  Google Scholar 

  • 91.

    Herbold, B. et al. Managing for salmon resilience in California’s variable and changing climate. San Franc. Estuary Watershed Sci. 16, https://escholarship.org/uc/item/8rb3z3nj (2018).

  • 92.

    Chittaro, P. et al. Variability in the performance of juvenile Chinook salmon is explained primarily by when and where they resided in estuarine habitats. Ecol. Freshw. Fish. 27, 857–873 (2018).

    Article  Google Scholar 

  • 93.

    Beechie, T. et al. Restoring salmon habitat for a changing climate. River Res. Appl. 29, 939–960 (2013).

    Article  Google Scholar 

  • 94.

    Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife & Washington Department of Fish and Wildlife. Snake River ESU Spring Summer Chinook Natural Origin Spawner Abundance Dataset (1949-2017) (2018).

  • 95.

    Nez Perce Tribe East Fork South Fork Salmon River summer Chinook and Secesh River summer Chinook, Natural Origin Spawner Abundance Dataset (1957-2017). (Protocol and methods available at https://www.cbfish.org/Document.mvc/Viewer/P165414. Personal communication with Mari Williams, NOAAF NWFSC/OAI 2019, 2019).

  • 96.

    StreamNet. Fish data for the Northwest. http://www.streamnet.org/ (2018).

  • 97.

    Faulkner, J. R., Widener, D. L., Smith, S. G., Marsh, T. M. & Zabel, R. W. Survival estimates for the passage of spring migrating juvenile salmonids through Snake and Columbia River dams and reservoirs, 2017. (Draft report of the National Marine Fisheries Service to the Bonneville Power Administration. Portland, Oregon). https://www.nwfsc.noaa.gov/contact/display_staffprofilepubs.cfm?staffid=1524 (2018).

  • 98.

    Lamb, J. J. et al. Monitoring the migrations of wild Snake River spring/summer Chinook salmon juveniles: survival and timing, 2017. (Report of the National Marine Fisheries Service to the Bonneville Power Administration. Portland, Oregon. https://www.nwfsc.noaa.gov/contact/display_staffprofilepubs.cfm?staffid=550 (2018).

  • 99.

    DART. Columbia river data access in real time. http://www.cbr.washington.edu/dart/dart.html (2019).

  • 100.

    NOAA Fisheries. Salmon population summary. https://catalog.data.gov/dataset/sps-abundance-salmon-population-summary-database (2019).

  • 101.

    Kareiva, P., Marvier, M. & McClure, M. Recovery and management options for spring/summer Chinook salmon in the Columbia River basin. Science 290, 977–979 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 102.

    Hartig, F., Calabrese, J. M., Reineking, B., Wiegand, T. & Huth, A. Statistical inference for stochastic simulation models—theory and application. Ecol. Letts. 14, 816–827 (2011).

  • 103.

    Csillery, K., Blum, M. G. B., Gaggiotti, O. E. & Francois, O. Approximate Bayesian computation (ABC). Pract. Trends Ecol. Evolution 25, 410–418 (2010).

    Article  Google Scholar 

  • 104.

    R. Core Team. R version 3.6.2: A Language and Environmental for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

  • 105.

    Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 182, 513–585 (1825).

    Google Scholar 

  • 106.

    Gelman, A., Carlin, J. B. & Rubin, D. B. Bayesian Data Analysis (Chapman & Hall, 2004).

  • 107.

    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

    Article  Google Scholar 

  • 108.

    Zabel, R. W., Burke, B. J., Moser, M. L. & Peery, C. Relating dam passage of adult salmon to varying river conditions using time-to-event analysis. Am. Fish. Soc. Symp. 61, 153–163 (2008).

    Google Scholar 

  • 109.

    Chasco, B. E., Burke, B. J., Crozier, L. G. & Zabel, R. W. In press. Differential impacts of freshwater and marine covariates on wild and hatchery Chinook salmon marine survival. Plos One.

  • 110.

    U.S. Army Corps of Engineers (ACOE), Northwestern Division Bureau of Reclamation & Administration, P. N. R. B. P. Columbia River System Operations Draft Environmental Impact Statement, February 2020. DOE/EIS-0529 (2020).

  • 111.

    Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. & Bell, B. M. TMB: automatic differentiation and laplace approximation. J. Stat. Softw. 70, 1–21 (2016).

    Article  Google Scholar 

  • 112.

    Brady, R. X., Alexander, M. A., Lovenduski, N. S. & Rykaczewski, R. R. Emergent anthropogenic trends in California Current upwelling. Geophys. Res. Lett. 44, 5044–5052 (2017).

    Article  Google Scholar 

  • 113.

    National Oceanic and Atmospheric Administration. NOAA Earth System Research Laboratory, Climate Change web portal, CMIP5 maps. Available at https://psl.noaa.gov/ipcc/ocn/ccwp.html (2018). (Accessed November 2018).

  • 114.

    Yearsley, J. R. A semi-Lagrangian water temperature model for advection-dominated river systems. Water Resour. Res. 45, W12405 (2009).

    Article  Google Scholar 

  • 115.

    Brekke, L., Kuepper, B. & Vaddey, S. Climate and hydrology datasets for use in the RMJOC agencies’ longer-term planning studies: Part 1 – Future Climate and Hydrology Datasets. https://www.usbr.gov/pn/climate/planning/reports/index.html (2010).


  • Source: Ecology - nature.com

    Reply to: Concerns about phytoplankton bloom trends in global lakes

    The catalyzing potential of J-WAFS seed grants