in

Large-scale farmer-led experiment demonstrates positive impact of cover crops on multiple soil health indicators

  • 1.

    Seifert, C. A., Azzari, G. & Lobell, D. B. Satellite detection of cover crops and their effects on crop yield in the Midwestern United States. Environ. Res. Lett. 13, 064033 (2018).

    ADS  Article  Google Scholar 

  • 2.

    2017 Census of Agriculture, Summary and State Data (USDA, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf

  • 3.

    Basche, A. D. et al. Soil water improvements with the long-term use of a winter rye cover crop. Agric. Water Manag. 172, 40–50 (2016).

    Article  Google Scholar 

  • 4.

    Schipanski, M. E. et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 125, 12–22 (2014).

    Article  Google Scholar 

  • 5.

    Blanco-Canqui, H. et al. Cover crops and ecosystem services: insights from studies in temperate soils. Agron. J. 107, 2449–2474 (2015).

    CAS  Article  Google Scholar 

  • 6.

    Andrews, S. S. et al. On‐farm assessment of soil quality in California’s central valley. Agron. J. 94, 12–23 (2002).

    Article  Google Scholar 

  • 7.

    Welch, R. Y., Behnke, G. D., Davis, A. S., Masiunas, J. & Villamil, M. B. Using cover crops in headlands of organic grain farms: effects on soil properties, weeds and crop yields. Agric. Ecosyst. Environ. 216, 322–332 (2016).

    Article  Google Scholar 

  • 8.

    Wyland, L. Winter cover crops in a vegetable cropping system: impacts on nitrate leaching, soil water, crop yield, pests and management costs. Agric. Ecosyst. Environ. 59, 1–17 (1996).

    Article  Google Scholar 

  • 9.

    Karlen, D. L. & Doran, J. W. Cover crop management effects on soybean and corn growth and nitrogen dynamics in an on-farm study. Am. J. Altern. Agric. 6, 71–82 (1991).

    Article  Google Scholar 

  • 10.

    Koch, R. L. et al. On-farm evaluation of a fall-seeded rye cover crop for suppression of soybean aphid (Hemiptera: Aphididae) on soybean: suppression of soybean aphid with rye cover crop. Agric. For. Entomol. 17, 239–246 (2015).

    Article  Google Scholar 

  • 11.

    Sayre, N. F., deBuys, W., Bestelmeyer, B. T. & Havstad, K. M. “The Range Problem” after a century of rangeland science: new research themes for altered landscapes. Rangeland Ecol. Manag. 65, 545–552 (2012).

    Article  Google Scholar 

  • 12.

    Kladivko, E. J. et al. State-wide soil health programs for education and on-farm assessment: lessons learned. J. Soil Water Conserv. 74, 12A–17A (2019).

    Article  Google Scholar 

  • 13.

    Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis. Agric. Ecosyst. Environ. 200, 33–41 (2015).

    CAS  Article  Google Scholar 

  • 14.

    Vermeulen, S. et al. A global agenda for collective action on soil carbon. Nat. Sustain. 2, 2–4 (2019).

    Article  Google Scholar 

  • 15.

    Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).

    ADS  PubMed  Article  Google Scholar 

  • 16.

    Stewart, R. D. et al. What we talk about when we talk about soil health. Agric. Environ. Lett. 3, 180033 (2018).

    Article  CAS  Google Scholar 

  • 17.

    Norris, C. E. et al. Introducing the North American project to evaluate soil health measurements. Agron. J. 112, 3195–3215 (2020).

    Article  Google Scholar 

  • 18.

    Sanderman, J., Savage, K. & Dangal, S. R. S. Mid‐infrared spectroscopy for prediction of soil health indicators in the United States. Soil Sci. Soc. Am. J. 84, 251–261 (2020).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Rorick, J. D. & Kladivko, E. J. Cereal rye cover crop effects on soil carbon and physical properties in Southeastern Indiana. J. Soil Water Conserv. 72, 260–265 (2017).

    Article  Google Scholar 

  • 20.

    Faé, G. S. et al. Integrating winter annual forages into a no-till corn silage system. Agron. J. 101, 1286–1296 (2009).

    Article  Google Scholar 

  • 21.

    Wegner, B. R. et al. Soil response to corn residue removal and cover crops in eastern South Dakota. Soil Sci. Soc. Am. J. 79, 1179–1187 (2015).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Karlen, D. L., Goeser, N. J., Veum, K. S. & Yost, M. A. On-farm soil health evaluations: challenges and opportunities. J. Soil Water Conserv. 72, 26A–31A (2017).

    Article  Google Scholar 

  • 23.

    Wade, J. et al. Improved soil biological health increases corn grain yield in N fertilized systems across the Corn Belt. Sci. Rep. 10, 3917 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).

    Article  Google Scholar 

  • 25.

    Stanton, C. Y. et al. Managing cropland and rangeland for climate mitigation: an expert elicitation on soil carbon in California. Clim. Change 147, 633–646 (2018).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Lugato, E., Leip, A. & Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Change 8, 219–223 (2018).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Kaye, J. P. & Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 37, 4 (2017).

    Article  Google Scholar 

  • 28.

    Basche, A. D. & DeLonge, M. S. Comparing infiltration rates in soils managed with conventional and alternative farming methods: a meta-analysis. PLoS ONE 14, e0215702 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Basche, A. & DeLonge, M. The impact of continuous living cover on soil hydrologic properties: a meta-analysis. Soil Sci. Soc. Am. J. 81, 1179–1190 (2017).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Roper, W. R., Osmond, D. L. & Heitman, J. L. A response to “Reanalysis validates soil health indicator sensitivity and correlation with long‐term crop yields”. Soil Sci. Soc. Am. J. 83, 1842–1845 (2019).

    ADS  CAS  Article  Google Scholar 

  • 31.

    King, A. E., Ali, G. A., Gillespie, A. W. & Wagner-Riddle, C. Soil organic matter as catalyst of crop resource capture. Front. Environ. Sci. 8, 50 (2020).

    Article  Google Scholar 

  • 32.

    Oldfield, E. E., Bradford, M. A. & Wood, S. A. Global meta-analysis of the relationship between soil organic matter and crop yields. SOIL 5, 15–32 (2019).

    CAS  Article  Google Scholar 

  • 33.

    Oldfield, E. E., Wood, S. A. & Bradford, M. A. Direct evidence using a controlled greenhouse study for threshold effects of soil organic matter on crop growth. Ecol. Appl. 30, e02073 (2020).

    PubMed  Article  Google Scholar 

  • 34.

    Wood, S. A. et al. Opposing effects of different soil organic matter fractions on crop yields. Ecol. Appl. 26, 2072–2085 (2016).

    PubMed  Article  Google Scholar 

  • 35.

    Fine, A. K., van Es, H. M. & Schindelbeck, R. R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81, 589 (2017).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Fine, A. K., Ristow, A., Schindelbeck, R. R. & van Es, H. M. Update of scoring functions for Cornell Soil Health Test. What’s Cropping Up? Blog https://blogs.cornell.edu/whatscroppingup/2016/11/30/update-of-scoring-functions-for-cornell-soil-health-test/ (2016).

  • 37.

    Bradford, M. A. et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Bradford, M. A. et al. Reply to Byrnes et al.: Aggregation can obscure understanding of ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, E5491 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Kettler, T. A., Doran, J. W. & Gilbert, T. L. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Moebius, B. N. et al. Evaluation of laboratory-measured soil properties as indicators of soil physical quality. Soil Sci. 172, 895–912 (2007).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Reynolds, W. & Topp, G. in Soil Sampling and Methods of Analysis (eds Carter, M. R. & Gregorich, E. G.) 981–997 (CRC Press, 2008).

  • 42.

    Nelson, D. & Sommers, D. in Methods of Soil Analysis. Part 3 (Sparks, D. L., Page, A. L., Helmke, P. A. & Loeppert, R. H.) 961–1010 (Soil Science Society of America, 1996).

  • 43.

    Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B. & Samson-Liebig, S. E. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. Am. J. Altern. Agric. 18, 3–17 (2003).

    Article  Google Scholar 

  • 44.

    Haney, R. L. & Haney, E. B. Simple and rapid laboratory method for rewetting dry soil for incubations. Commun. Soil Sci. Plant Anal. 41, 1493–1501 (2010).

    CAS  Article  Google Scholar 

  • 45.

    Wright, S. F. & Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161, 575–586 (1996).

    ADS  CAS  Article  Google Scholar 

  • 46.

    Bunnefeld, N. & Phillimore, A. B. Island, archipelago and taxon effects: mixed models as a means of dealing with the imperfect design of nature’s experiments. Ecography 35, 15–22 (2012).

    Article  Google Scholar 

  • 47.

    Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).

    MathSciNet  PubMed  Article  Google Scholar 

  • 48.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 49.

    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 50.

    Stan Development Team. RStan: the R interface to Stan. R package v2.17.3 (2018).

  • 51.

    Rasmussen, C. et al. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137, 297–306 (2018).

    CAS  Article  Google Scholar 

  • 52.

    Gelman, A. et al. Bayesian Data Analysis 3rd edn (Chapman and Hall, CRC, 2013).

  • 53.

    Howard, P. J. A. & Howard, D. M. Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons. Biol. Fertil. Soils 9, 306–310 (1990).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Reply to: Concerns about phytoplankton bloom trends in global lakes

    The catalyzing potential of J-WAFS seed grants