in

Fossil evidence for vampire squid inhabiting oxygen-depleted ocean zones since at least the Oligocene

  • 1.

    Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophy. Geosy. 11, Q03004 (2010).

    Google Scholar 

  • 2.

    Gambacorta, G., Bersezio, R., Weissert, H. & Erba, E. Onset and demise of Cretaceous oceanic anoxic events: The coupling of surface and bottom oceanic processes in two pelagic basins of the western Tethys. Paleoceanography 31, 732–757 (2016).

    Google Scholar 

  • 3.

    Palfy, J. & Smith, P. L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo–Ferrar flood basalt volcanism. Geology 28, 747–750 (2000).

    Google Scholar 

  • 4.

    Leckie, R. M., Bralower, T. J. & Cashman, R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid‐Cretaceous. Paleoceanography 17, 13-11–13-29 (2002).

    Google Scholar 

  • 5.

    Erba, E. Calcareous nannofossils and Mesozoic oceanic anoxic events. Mar. Micropaleontol. 52, 85–106 (2004).

    Google Scholar 

  • 6.

    Erbacher, J. V. J. T. & Thurow, J. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Mar. Micropaleontol. 30, 139–158 (1997).

    Google Scholar 

  • 7.

    Harries, P. J. & Little, C. T. The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 39–66 (1999).

    Google Scholar 

  • 8.

    Danise, S., Twitchett, R. J. & Little, C. T. Environmental controls on Jurassic marine ecosystems during global warming. Geology 43, 263–266 (2015).

    CAS  Google Scholar 

  • 9.

    Dera, G., Toumoulin, A. & De Baets, K. Diversity and morphological evolution of Jurassic belemnites from South Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 457, 80–97 (2016).

    Google Scholar 

  • 10.

    Rita, P., Nätscher, P., Duarte, L. V., Weis, R. & De Baets, K. Mechanisms and drivers of belemnite body-size dynamics across the Pliensbachian–Toarcian crisis. Roy. Soc. Open Sci. 6, 190494 (2019).

    Google Scholar 

  • 11.

    Chun, C. Aus den Tiefen des Weltmeeres, 88 (ed. Fischer, G.) (Schilderungen von der Deutschen Tiefsee-Expedition, 1903).

  • 12.

    Seibel, B. A. et al. Vampire blood: respiratory physiology of the vampire squid (Vampyromorpha: Cephalopoda) in relation to the oxygen minimum layer. Exp. Biol. Online 4, 1–10 (1999).

    Google Scholar 

  • 13.

    Hoving, H. J. T. & Robison, B. H. Vampire squid: Detritivores in the oxygen minimum zone. Proc. Biol. Sci. 279, 4559–4567 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Golikov, A. V. et al. The first global deep-sea stable isotope assessment reveals the unique trophic ecology of Vampire Squid Vampyroteuthis infernalis (Cephalopoda). Sci. Rep. 9, 19099 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Young, R. & Vecchione, M. Analysis of morphology to determine primary sister taxon relationships within coleoid cephalopods. Am. Malacol. Bull. 12, 91–112 (1996).

    Google Scholar 

  • 16.

    Strugnell, J. et al. Whole mitochondrial genome of the Ram’s Horn Squid shines light on the phylogenetic position of the monotypic order Spirulida (Haeckel, 1896). Mol. Phylogenet. Evol. 109, 296–301 (2017).

    CAS  Google Scholar 

  • 17.

    Sanchez, G. et al. Genus-level phylogeny of cephalopods using molecular markers: current status and problematic areas. PeerJ 6, e4331 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 18.

    Lindgren, A. R. et al. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment. BMC Evol. Biol. 12, 129 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Tanner, A. R. et al. Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic marine revolution. Proc. Biol. Sci. 284, 20162818 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Lindgren, A. R., Giribet, G. & Nishiguchi, M. K. A combined approach to the phylogeny of Cephalopoda (Mollusca). Cladistics 20, 454–486 (2004).

    Google Scholar 

  • 21.

    Fara, E. What are Lazarus taxa? Geol. J. 36, 291–303 (2001).

    Google Scholar 

  • 22.

    Packard, A. Cephalopods and fish: the limits of convergence. Biol. Rev. 47, 241–307 (1972).

    CAS  Google Scholar 

  • 23.

    Nixon, M. & Young, J. Z. The Brains and Lives of Cephalopods, 1–406 (Oxford University Press, 2003).

  • 24.

    Kröger, B. et al. Cephalopod origin and evolution. Bioessays 33, 602–613 (2011).

    Google Scholar 

  • 25.

    Fuchs, D. Part M, Chapter 9B: the gladius and gladius vestige in fossil Coleoidea. Treatise Online 83, 1–23 (2016).

    Google Scholar 

  • 26.

    Fuchs, D. et al. The Muensterelloidea: phylogeny and character evolution of Mesozoic stem octopods. Pap. Palaeontol. 6, 31–92 (2019).

    Google Scholar 

  • 27.

    Fuchs, D. et al. The locomotion system of fossil Coleoidea (Cephalopoda) and its phylogenetic significance. Lethaia 49, 433–454 (2016).

    Google Scholar 

  • 28.

    Kretzoi, M. Necroteuthis n.gen. (Ceph. Dibr. Necroteuthidae n.f.) aus dem Oligozän von Budapest und das System der Dibranchiata. F.öldt. K.özl. (Bp.) 72, 124–138 (1942).

    Google Scholar 

  • 29.

    Donovan, D. T. Evolution of the dibranchiate Cephalopoda. Symp. Zool. Soc. Lond. 38, 15–48 (1977).

    Google Scholar 

  • 30.

    Riegraf, W., Janssen, N., & Schmitt-Riegraf, C. A. in Fossilum Catalogus I. Animalia, Vol. 135 (ed. Westphal, F.), 1–512 (1998).

  • 31.

    Fuchs, D. Part M, Coleoidea, chapter 23G: systematic descriptions: octobrachia. Treatise Online 138, 1–52 (2020).

    Google Scholar 

  • 32.

    Schulz, H. M., Bechtel, A. & Sachsenhofer, R. F. The birth of the Paratethys during the Early Oligocene: from Tethys to an ancient Black Sea analogue? Glob. Planet. Change 49, 163–176 (2005).

    Google Scholar 

  • 33.

    Bojanowski, M. J. et al. The Central Paratethys during Oligocene as an ancient counterpart of the present-day Black Sea: Unique records from the coccolith limestones. Mar. Geol. 403, 301–328 (2018).

    CAS  Google Scholar 

  • 34.

    Bizikov, V. A. Evolution of the shell in Cephalopoda, 1–448 (VNIRO, 2008).

  • 35.

    Weaver, P. G. et al. Characterization of organics consistent with β-Chitin preserved in the Late Eocene cuttlefish Mississaepia mississippiensis. PLoS ONE 6, e28195 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Kaiho, K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22, 719–722 (1994).

    CAS  Google Scholar 

  • 37.

    Bechtel, A. et al. Facies evolution and stratigraphic correlation in the early Oligocene Tard clay of Hungary as revealed by maceral, biomarker and stable isotope composition. Mar. Petrol. Geol. 35, 55–74 (2012).

    CAS  Google Scholar 

  • 38.

    Donovan, D. T. Part M., Chapter 9C: composition and structure of gladii in fossil Coleoidea. Treatise Online 75, 1–5 (2016).

    Google Scholar 

  • 39.

    Nagymarosy, A. et al. The effect of the relative sea-level changes in the north Hungarian Paleogene Basin. Geol. Soc. Greece Spec. Publ. 4, 247–253 (1995).

    Google Scholar 

  • 40.

    Ozsvárt, P. et al. The Eocene-Oligocene climate transition in the Central Paratethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 459, 471–487 (2016).

    Google Scholar 

  • 41.

    Nyerges, A., Kocsis, T. Á. & Pálfy, J. Changes in calcareous nannoplankton assemblages around the Eocene-Oligocene climate transition in the Hungarian Palaeogene Basin (Central Paratethys). Hist. Biol. 1–14. https://doi.org/10.1080/08912963.2019.1705295 (2020).

    Article  Google Scholar 

  • 42.

    Ozsvárt, P. Middle and Late Eocene benthic foraminiferal fauna from the Hungarian Paleogene Basin: systematics and paleoecology. Geol. Pannonica Spec. Pap. 2, 1–129 (2007).

    Google Scholar 

  • 43.

    Nagymarosy, A. Lower Oligocene nannoplankton in anoxic deposits of the central Paratethys. 8th International Nannoplankton Assoc. Conf., Bremen. J. Nannoplankton Res. 22, 128–129 (2000).

    Google Scholar 

  • 44.

    Nagymarosy, A. & Voronina, A. A. Calcareous nannoplankton from the Lower Maikopian beds (Early Oligocene, Union of Independent States). In Proc. 4thINA Conf. Prague 1991, Knihovnička ZPN 14b (eds Hamršmíd, B. & Young, J.) 187–221 (Nannoplankton Research, 1992).

  • 45.

    Murray, J. W. Ecology and Applications of Benthic Foraminifera, 1–426 (Cambridge University Press, 2006).

  • 46.

    Mørk, A. & Bromley, R. G. Ichnology of a marine regressive systems tract: the Middle Triassic of Svalbard. Polar Res. 27, 339–359 (2008).

    Google Scholar 

  • 47.

    Báldi, T. Mid-Tertiary Stratigraphy and Paleogeographic Evolution of Hungary, 1–201 (Akadémiai Kiadó, 1986).

  • 48.

    Khromov, D. N. Distribution patterns in Sepiidae. Smithson. Contr. Zool. 568, 191–206 (1998).

    Google Scholar 

  • 49.

    Sepkoski, J. J. Jr. A model of onshore-offshore change in faunal diversity. Paleobiology 17, 68–77 (1991).

    Google Scholar 

  • 50.

    Smith, A. B. & Stockley, B. The geological history of deep-sea colonization by echinoids: roles of surface productivity and deep-water ventilation. P. Roy. Soc. B Biol. Sci. 272, 865–869 (2005).

    Google Scholar 

  • 51.

    Thuy, B. et al. First glimpse into Lower Jurassic deep-sea biodiversity: in situ diversification and resilience against extinction. P. Roy. Soc. B Biol. Sci. 281, 20132624 (2014).

    Google Scholar 

  • 52.

    Jacobs, D. K. & Lindberg, D. R. Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. Proc. Natl Acad. Sci. USA 95, 9396–9401 (1998).

    CAS  Google Scholar 

  • 53.

    Zeidberg, L. D. & Robison, B. H. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. Proc. Natl Acad. Sci. USA 104, 12948–12950 (2007).

    CAS  Google Scholar 

  • 54.

    Rogers, A. D. The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep Sea Res. Pt. II 47, 119–148 (2000).

    Google Scholar 

  • 55.

    Levin, L. A. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr. Mar. Biol. Annu. Rev. 41, 1–45 (2003).

    Google Scholar 

  • 56.

    Childress, J. J. & Seibel, B. A. Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. J. Exp. Biol. 201, 1223–1232 (1998).

    CAS  Google Scholar 

  • 57.

    Gooday, A. J. et al. Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones. Mar. Ecol. 31, 125–147 (2010).

    Google Scholar 

  • 58.

    Wood, R. & Erwin, D. H. Innovation not recovery: dynamic redox promotes metazoan radiations. Biol. Rev. 93, 863–873 (2018).

    Google Scholar 

  • 59.

    Hermoso, M., Minoletti, F. & Pellenard, P. Black shale deposition during Toarcian super‐greenhouse driven by sea level. Clim 9, 2703–2712 (2013).

    Google Scholar 

  • 60.

    Kruta, I. et al. Proteroctopus ribeti in coleoid evolution. Paleontology 59, 767–773 (2016).

    Google Scholar 

  • 61.

    Wilby, P. R., Briggs, D. E. & Riou, B. Mineralization of soft-bodied invertebrates in a Jurassic metalliferous deposit. Geology 24, 847–850 (1996).

    CAS  Google Scholar 

  • 62.

    Etter, W. in Exceptional fossil preservation. A Unique View on the Evolution of Marine Life (eds Bottjer, D. J., Etter, W., Hagadorn, J. W. & Tang, C. M.) 293–305 (Columbia University Press, 2002).

  • 63.

    Charbonnier, S., Vannier, J., Gaillard, C., Bourseau, J.-P. & Hantzpergue, P. The La Voulte Lagerstätte (Callovian): Evidence for a deep water setting from sponge and crinoid communities. Palaeogeogr. Palaeoclimatol. Palaeoecol. 250, 216–236 (2007).

    Google Scholar 

  • 64.

    Charbonnier, S., Audo, D., Caze, B. & Biot, V. The La Voulte-sur-Rhône Lagerstätte (Middle Jurassic, France). CR Palevol 13, 369–381 (2014).

    Google Scholar 

  • 65.

    Vannier, J., Schoenemann, B., Gillot, B., S. Charbonnier, S. & Clarkson, E. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic. Nat. Commun. 7, 10320 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Audo, D. et al. palaeoecology of Voulteryon parvulus (eucrustacea, polychelida) from the Middle Jurassic of La Voulte-sur-Rhône Fossil-Lagerstätte (France). Sci. Rep. 9, 1–13 (2019).

    CAS  Google Scholar 

  • 67.

    Viohl, G. in Solnhofen. Ein Fenster in die Jurazeit. (eds Arratia, G., Schultze, H.-P., Tischlinger, H. & Viohl, G.) 56–62 (Verlag Dr. Friedrich Pfeil, 2015).

  • 68.

    Engeser, T. & Reitner, J. Teuthiden aus dem Unterapt (“Töck”) von Helgoland (Schleswig-Holstein, Norddeutschland). Pal. Z. 59, 245–260 (1985).

    Google Scholar 

  • 69.

    Mutterlose, J., Pauly, S. & Steuber, T. Temperature controlled deposition of early Cretaceous (Barremian–early Aptian) black shales in an epicontinental sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 273, 330–345 (2009).

    Google Scholar 

  • 70.

    Heldt, M., Mutterlose, J., Berner, U. & Erbacher, J. First high-resolution δ13C-records across black shales of the Early Aptian Oceanic Anoxic Event 1a within the mid-latitudes of northwest Europe (Germany, Lower Saxony Basin). Newsl. Stratigr. 45, 151–169 (2012).

    Google Scholar 

  • 71.

    Bottini, C. & Mutterlose, J. Integrated stratigraphy of Early Aptian black shalesin the Boreal Realm: calcareous nanofossil and stable isotope evidence forglobal and regional processes. Newsl. Stratigr. 45, 115–137 (2012).

    Google Scholar 

  • 72.

    Landman, N. H. et al. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42, 707–710 (2014).

    CAS  Google Scholar 

  • 73.

    Fuchs, D., Laptikhovsky, V., Nikolaeva, S., Ippolitov, A. & Rogov, M. Evolution of reproductive strategies in coleoid mollusks. Paleobiology 46, 82–103 (2020).

    Google Scholar 

  • 74.

    Tajika, A., Nützel, A. & Klug, C. The old and the new plankton: ecological replacement of associations of mollusc plankton and giant filter feeders after the Cretaceous? PeerJ 6, e4219 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 75.

    Lu, C. C. & Clarke, M. R. Vertical distribution of cephalopods at 40°N, 53°N and 60°N at 20°W in the North Atlantic. J. Mar. Biol. Assoc. U.K. 55, 143–163 (1975).

    Google Scholar 

  • 76.

    Clements, T., Colleary, C., De Baets, K. & Vinther, J. Buoyancy mechanisms limit preservation of coleoid cephalopod soft tissues in Mesozoic Lagerstätten. Palaeontology 60, 1–14 (2017).

    Google Scholar 

  • 77.

    Košťák, M., Kohout, O., Mazuch, M. & Čech, S. An unusual occurrence of vascoceratid ammonites in the Bohemian Cretaceous Basin (Czech Republic) marks the lower Turonian boundary between the Boreal and Tethyan realms in central Europe. Cret. Res. 108, 104338 (2020).

    Google Scholar 

  • 78.

    Oji, T. in Palaeobiology II (eds Briggs, D. E. G. & Crowther, P. R.) 444–447 (Blackwell Science Ltd, 2001).

  • 79.

    Báldi, T. A. in Geológiai Kirándulások Magyarország Közepén (ed. Palotai, M.) 94–129 (Hantken Kiadó, 2010).

  • 80.

    Tari, G. et al. Paleogene retroarc flexural basin beneath the Neogene Pannonian Basin: a geodynamic model. Tectonophysics 226, 433–455 (1993).

    Google Scholar 

  • 81.

    Švábenická, L. et al. Biostratigraphy and paleoenvironmental changes on the transition from the Menilite to Krosno lithofacies (Western Carpathians, Czech Republic). Geol. Carpath. 58, 237–262 (2007).

    Google Scholar 

  • 82.

    Kováč, M. et al. Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Glob. Planet. Change 140, 9–27 (2016).

    Google Scholar 

  • 83.

    Nevesskaja, L. A. et al. History of Paratethys. Ann. Inst. Géol. Hong. 70, 337–342 (1987).

    Google Scholar 

  • 84.

    Lafuente, B., Downs, R. T., Yang, H. & Stone, N. in Highlights in Mineralogical Crystallography (eds Armbruster, T. & Danisi, R. M.) 1–30 (De Gruyter, 2015).

  • 85.

    McCrea, J. M. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18, 849–857 (1950).

    CAS  Google Scholar 

  • 86.

    Guiry, M. D. & Guiry, G. M. AlgaeBase (World-wide electronic publication, National University of Ireland, Galway, accessed May 18, 2020); https://www.algaebase.org.

  • 87.

    Holcová, K. Postmortem transport and resedimentation of foraminiferal tests: relations to cyclical changes of foraminiferal assemblages. Palaeogeogr. Palaeoclimatol. Palaeoecol. 145, 157–182 (1999).

    Google Scholar 

  • 88.

    Folk, R. L. Nannobacteria and the formation of framboidal pyrite: Textural evidence. J. Earth Syst. Sci. 114, 369–374 (2005).

    Google Scholar 

  • 89.

    Zágoršek, K. et al. Bryozoan event from Middle Miocene (Early Badenian) lower neritic sediments from the locality Kralice nad Oslavou (Central Paratethys, Moravian part of the Carpathian Foredeep). Int. J. Earth. Sci. 97, 835–850 (2007).

  • 90.

    Košťák, M. et al. Micro-computed tomography data supporting the manuscript: Fossil evidence for vampire squid inhabiting oxygen-depleted ocean zones since at least the Oligocene. figshare https://doi.org/10.6084/m9.figshare.13526024 (2021).


  • Source: Ecology - nature.com

    Reply to: Concerns about phytoplankton bloom trends in global lakes

    The catalyzing potential of J-WAFS seed grants