in

Feasibility of reintroducing grassland megaherbivores, the greater one-horned rhinoceros, and swamp buffalo within their historic global range

  • 1.

    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Cardillo, M. et al. Human population density and extinction risk in the world ’ s carnivores. PLoS Biol. 2, 909–914 (2004).

    CAS  Article  Google Scholar 

  • 3.

    Pimm, S. L. et al. Can we defy nature’s end ?. Science 293, 2207–2208 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open Sci. 3, 160498 (2016).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Owen-Smith, N. Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13, 351–362 (1987).

    Article  Google Scholar 

  • 7.

    Pradhan, N. M. B. & Wegge, P. Dry season habitat selection by a recolonizing population of Asian elephants Elephas maximus in lowland Nepal. Acta Theriol. (Warsz) 52, 205–214 (2007).

    Article  Google Scholar 

  • 8.

    Hayward, M. W. et al. The reintroduction of large carnivores to the Eastern Cape South Africa: an assessment. Oryx 41(205), 214 (2007).

    Google Scholar 

  • 9.

    Owen-Smith, N. Megaherbivores: the influence of very large body size on ecology. Trends Ecol. Evol. https://doi.org/10.1111/j.1523-1739.1989.tb00246.x (1989).

    Article  Google Scholar 

  • 10.

    Karki, J. B., Jhala, Y. V. & Khanna, P. P. Grazing lawns in Terai Grasslands, Royal Bardia National Park, Nepal1. Biotropica 32, 423–429 (2000).

    Article  Google Scholar 

  • 11.

    McNaughton, S. J. Serengeti migratory wildebeest: facilitation of energy flow by grazing. Science 191, 92–94 (1976).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 12.

    Skarpe, C. et al. The return of the giants: ecological effects of an increasing elephant population. Ambio 33, 276–282 (2004).

    PubMed  Article  Google Scholar 

  • 13.

    Foose, T. J. & Van Strien, N. Asian Rhinos—Status Survey and Conservation Action Plan. Vol. 32 (1997).

  • 14.

    Subedi, N. et al. Population status, structure and distribution of the greater one-horned rhinoceros Rhinoceros unicornis in Nepal. Oryx 47, 352–360 (2013).

    Article  Google Scholar 

  • 15.

    Talukdar, B. R. R. C. Asian Rhino specialist group report. Pachyderm 53, 25–27 (2013).

    Google Scholar 

  • 16.

    Hedges, S., Sagar Baral, H., Timmins, R. & Duckworth, J. Bubalus arnee. IUCNRed List Threat. Species 2008 (2008).

  • 17.

    Leader-Williams, N. Fate riding on their horns—and genes?. ORYX 47, 311–312 (2013).

    Article  Google Scholar 

  • 18.

    Amin, R., Thomas, K., Emslie, R. H., Foose, T. J. & VanStrien, N. An overview of the conservation status of and threats to rhinoceros species in the wild. Int. Zoo Yearb. 40, 96–117 (2006).

    Article  Google Scholar 

  • 19.

    IUCN Red List Categories and Criteria, Version 3.1, second edition | IUCN Library System. IUCN (2012).

  • 20.

    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).

    Article  Google Scholar 

  • 21.

    Lacy, R. C. Vortex: A computer simulation model for population viability analysis. Wildl. Res. 20, 1–13 (1993).

    Article  Google Scholar 

  • 22.

    IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0. Gland, Switzerland: IUCN Species Survival Commission. Ecologial Applications (2013).

  • 23.

    Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).

    Article  Google Scholar 

  • 24.

    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Article  Google Scholar 

  • 25.

    Veloz, S. D. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 36, 2290–2299 (2009).

    Article  Google Scholar 

  • 26.

    Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379 (2013).

    Article  Google Scholar 

  • 27.

    Jhala, Y., Qureshi, Q. & Gopal, R. Status of Tigers, Copredators and Prey in India, 2014 (2015).

  • 28.

    Graham-Rowe, D. Biodiversity: endangered and in demand. Nature 480, S101–S103 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 29.

    Frankham, R. Genetic considerations in reintroduction programmes for top-order, terrestrial predators. In Reintroduction of Top-Order Predators 371–387 (Wiley-Blackwell, 2009). https://doi.org/10.1002/9781444312034.ch17

  • 30.

    Martin, E., Kumar Talukdar, B. & Vigne, L. Rhino poaching in Assam: challenges and opportunities. Pachyderm (2009).

  • 31.

    Rawat, G. S., Goyal, S. P. & Johnsingh, A. J. T. Ecological observations on the grasslands of Corbett Tiger Reserve India. Indian Forester 123(958), 963 (1997).

    Google Scholar 

  • 32.

    Dinerstein, E. & Schaller, G. The Return of the Unicorns: Natural History and Conservation of Greater—One Horned Rhinoceros (2003). https://doi.org/10.7312/dine08450.

  • 33.

    N Subedi 2012 Effect of Mikania micrantha on thrdemography, Habitat use, and Nutrition of Greater one horned rhinoceros in Chitwan National Park Dr. Philos Thesis

  • 34.

    Mathur, V.B., Gopal, R., Yadav, S.P., P. R. S. Management Effectiveness Evaluation (MEE) of Tiger Reserves in India: Process and Outcomes 97 (2011).

  • 35.

    Amin, R., Thomas, K., Emslie, R. H., Foose, T. J. & Van Strien, N. V. An overview of the conservation status of and threats to rhinoceros species in the wild. Int. Zoo Yearb. 40, 96–117 (2006).

    Article  Google Scholar 

  • 36.

    Singh, S. P., Sharma, A. & Talukdar, B. K. Translocation of Rhinos within Assam : a successful third round of the second phase of translocations under Indian Rhino Vision (IRV) 2020, 1–6 (2012).

    Google Scholar 

  • 37.

    Jhala, Y. ., Qureshi, Q., Gopal, R. & Sinha, P. . Status of the Tigers, Co-predators, and Prey in India, 2010. (2011).

  • 38.

    Rai, S. After 250 years, rhinos set to make comeback in west UP|Meerut News—Times of India. Times of India (2016).

  • 39.

    Subedi, N., Lamichhane, B. R., Amin, R., Jnawali, S. R. & Jhala, Y. V. Demography and viability of the largest population of greater one-horned rhinoceros in Nepal. Glob. Ecol. Conserv. 12, 241–252 (2017).

    Article  Google Scholar 

  • 40.

    IUCN Standards and Petitions Committee. IUCN Standards and Petitions Committee. Stand. Petitions Comm. 1, 1–60 (2019).

    Google Scholar 

  • 41.

    Cockrill, W. R. The water buffalo: a review. Br. Vet. J. 137, 8–10 (1981).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Kumar, S. et al. Mitochondrial DNA analyses of Indian water buffalo support a distinct genetic origin of river and swamp buffalo. Anim. Genet. 38, 227–232 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Aiyadurai, A. Wildlife hunting and conservation in Northeast India—a need for an interdisciplinary understanding.pdf. Int. J. Gall. Conserv. 2, 61–73 (2011).

    Google Scholar 

  • 44.

    Jhala, H. Y., Pokheral, C. P. & Subedi, N. Well being and conservation awareness of communities around Chitwan National Park, Nepal|Jhala|Indian Forester. Indian For. 145, 114–120 (2019).

    Google Scholar 

  • 45.

    Heinen, J. T. & Kandel, R. Threats to a small population: a census and conservation recommendations for wild buffalo Bubalus arnee in Nepal. Oryx 40, 324–330 (2006).

    Article  Google Scholar 

  • 46.

    Choudhury, A. The decline of the wild water buffalo in north-east India. Oryx 28, 70–73 (1994).

    Article  Google Scholar 

  • 47.

    Magioncalda, W. A modern insurgency: India’s evolving naxalite problem. S. Asia Monitor 140 (2010).

  • 48.

    Melles, S. J., Fortin, M.-J., Lindsay, K. & Badzinki, D. Expanding northward: influence of climate change, forest connectivity, and population processes on a threatened species’ range shift. Glob. Chang. Biol. 17, 17–31 (2011).

    ADS  Article  Google Scholar 

  • 49.

    Challender, D. W. S. & MacMillan, D. C. Poaching is more than an enforcement problem. Conserv. Lett. 7, 484–494 (2014).

    Article  Google Scholar 

  • 50.

    Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data?. Ecology 83, 2027–2036 (2002).

    Article  Google Scholar 

  • 51.

    Stockman, A. K., Beamer, D. A. & Bond, J. E. An evaluation of a GARP model as an approach to predicting the spatial distribution of non-vagile invertebrate species. Divers. Distrib. 12, 81–89 (2006).

    Article  Google Scholar 

  • 52.

    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography (Cop.) 36, 1058–1069 (2013).

    Article  Google Scholar 

  • 53.

    Phillips, S. J. & Dudı, M. Modeling of species distributions with Maxent : new extensions and a comprehensive evaluation. Ecograohy 31, 161–175 (2008).

    Article  Google Scholar 

  • 54.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Article  Google Scholar 

  • 55.

    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography (Cop.) 40, 887–893 (2017).

    Article  Google Scholar 

  • 56.

    Congalton, R. G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46 (1991).

    ADS  Article  Google Scholar 

  • 57.

    Roy, D. P. et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 145, 154–172 (2014).

    ADS  Article  Google Scholar 

  • 58.

    Dinerstein, E. & Price, L. Demography and habitat use by greater one-horned rhinoceros in Nepal. J. Wildl. Manage. 55, 401 (1991).

    Article  Google Scholar 

  • 59.

    Bontemps, S. et al. GLOBCOVER 2009 Products Description and Validation Report.

  • 60.

    Barsi, J., Lee, K., Kvaran, G., Markham, B. & Pedelty, J. The spectral response of the landsat-8 operational land imager. Remote Sens. 6, 10232–10251 (2014).

    ADS  Article  Google Scholar 

  • 61.

    Laurie, A. Behavioural ecology of the Greater one-horned rhinoceros (Rhinoceros unicornis). J. Zool. 196, 307–341 (2009).

    Article  Google Scholar 

  • 62.

    Dnerstein, E. & Price, L. Demography and habitat use by greater one-horned rhinoceros in Nepal author(s): Eric Dinerstein and Lori Price Source. J. Wildl. Manage. 55, 401–411 (1991).

    Article  Google Scholar 

  • 63.

    Pettorelli, N. et al. The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Climate Res. 46, 15–27 (2011).

    ADS  Article  Google Scholar 

  • 64.

    Raffini, F. et al. From nucleotides to satellite imagery: approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).

    CAS  Article  Google Scholar 

  • 65.

    Norberg, A. et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. https://doi.org/10.1002/ecm.1370 (2019).

    Article  Google Scholar 

  • 66.

    Peterson, A. T. & Nakazawa, Y. Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Glob. Ecol. Biogeogr. https://doi.org/10.1111/j.1466-8238.2007.00347.x (2007).

    Article  Google Scholar 

  • 67.

    Laurie, A. Behavioural ecology of the greater one-horned rhinoceros Rhinoceros unicornis. J. Zool. 196, 307–341 (1982).

    Article  Google Scholar 

  • 68.

    Kriticos, D. J. et al. CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3, 53–64 (2012).

    Article  Google Scholar 

  • 69.

    Rodríguez, E. et al. An Assessment of the SRTM Topographic Products.

  • 70.

    Watson, J. E. M., Whittaker, R. J. & Dawson, T. P. Habitat structure and proximity to forest edge affect the abundance and distribution of forest-dependent birds in tropical coastal forests of southeastern Madagascar. Biol. Conserv. 120, 311–327 (2004).

    Article  Google Scholar 

  • 71.

    Society WC. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Influence Index (HII) Dataset (Geographic) Society. Conserv Wildl https://doi.org/10.7927/H4BP00QC (2005).

    Article  Google Scholar 

  • 72.

    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    PubMed  Article  Google Scholar 

  • 73.

    Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 21, 498–507 (2011).

    Article  Google Scholar 

  • 74.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Article  Google Scholar 

  • 75.

    Shabani, F., Kumar, L. & Ahmadi, M. Assessing accuracy methods of species distribution models: AUC, specificity, sensitivity and the true skill statistic. 18, (2018).

  • 76.

    Warren, D. L. & Seifert, S. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Soc. Am. 21, 335–342 (2011).

    Google Scholar 

  • 77.

    Wiltshire, K. H. & Tanner, J. E. Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species. Ecol. Modell. 429, 109071 (2020).

    Article  Google Scholar 

  • 78.

    Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).

    Article  Google Scholar 

  • 79.

    Puri, K. & Joshi, R. A case study of greater one horned rhinoceros (Rhinoceros unicornis) in Kaziranga National Park of Assam India. NeBIO 9, 307–309 (2018).

    Google Scholar 

  • 80.

    DNPWC 2015. Rhino Count Report 2015 DNPWC.

  • 81.

    Mukherjee, T., Sharma, L. K., Saha, G. K., Thakur, M. & Chandra, K. Past, present and future: combining habitat suitability and future landcover simulation for long-term conservation management of Indian rhino. Sci. Rep. https://doi.org/10.1038/s41598-020-57547-0 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 82.

    CCF West Bengal. Estimation of Indian Rhinoceros (Rhinoceros unicornis) 2019 West Bengal (2019)

  • 83.

    Boyce, M. Population viability analysis: adaptive management for threatened and endangered species. 226–238 (1997).

  • 84.

    Khatri, T. B., Shah, D. N. & Mishra, N. Wild Water Buffalo Bubalus arnee in Koshi Tappu Wildlife Reserve, Nepal: status, population and conservation importance. J. Threat. Taxa 04, 3294–3301 (2012).

    Article  Google Scholar 

  • 85.

    Phillips, S., Anderson, R., Dudík, M., Schapire, R. & Blair, M. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893 (2017).


  • Source: Ecology - nature.com

    Q&A: Clare Balboni on environmental economics

    Researchers improve efficiency of next-generation solar cell material