in

Effects of maize (Zea mays) genotypes and microbial sources in shaping fall armyworm (Spodoptera frugiperda) gut bacterial communities

  • 1.

    Moran, N. A., Ochman, H. & Hammer, T. J. Evolutionary and ecological consequences of gut microbial communities. Annu. Rev. Ecol. Syst. 50, 451–475 (2019).

    Article  Google Scholar 

  • 2.

    Engel, P. & Moran, N. A. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Paniagua Voirol, L. R., Frago, E., Kaltenpoth, M., Hilker, M. & Fatouros, N. E. Bacterial symbionts in Lepidoptera: Their diversity, transmission, and impact on the host. Front. Microbiol. 9, 556 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Mason, C. J. Complex relationships at the intersection of insect gut microbiomes and plant defenses. J. Chem. Ecol. 46, 793–807 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, fnz117 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Jones, A., Mason, C., Felton, G. & Hoover, K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci. Rep. 9, 2792 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 8.

    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. 114, 9641–9646 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Broderick, N. A., Raffa, K. F., Goodman, R. M. & Handelsman, J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70, 293–300 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Shao, Y., Arias-Cordero, E., Guo, H., Bartram, S. & Boland, W. In vivo Pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis. PLoS ONE 9, e85948 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 11.

    Priya, N. G., Ojha, A., Kajla, M. K., Raj, A. & Rajagopal, R. Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS ONE 7, e30768 (2012).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 12.

    Mason, C. J. & Raffa, K. F. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ. Entomol. 43, 595–604 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Martemyanov, V. V. et al. Phenological asynchrony between host plant and gypsy moth reduces insect gut microbiota and susceptibility to Bacillus thuringiensis. Ecol. Evol. 6, 7298–7310 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Chen, B. et al. Gut microbiota metabolic potential correlates with body size between mulberry-feeding lepidopteran pest species. Pest Manag. Sci. 76, 1313–1323 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Su’ad, A. Y. et al. Host plant-dependent effects of microbes and phytochemistry on the insect immune response. Oecologia 191, 141–152 (2019).

    Article  Google Scholar 

  • 16.

    Mason, C. J. et al. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proc. Natl. Acad. Sci. 116, 15991–15996 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Staudacher, H. et al. Variability of bacterial communities in the moth Heliothis virescens indicates transient association with the host. PLoS ONE 11, e0154514 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 18.

    Ericsson, A. C., Personett, A. R., Turner, G., Dorfmeyer, R. A. & Franklin, C. L. Variable colonization after reciprocal fecal microbiota transfer between mice with low and high richness microbiota. Front. Microbiol. 8, 196 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Kreisinger, J. et al. Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front. Microbiol. 8, 50 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Stappenbeck, T. S. & Virgin, H. W. Accounting for reciprocal host-microbiome interactions in experimental science. Nature 534, 191–199 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Mikaelyan, A., Thompson, C. L., Hofer, M. J. & Brune, A. Deterministic assembly of complex bacterial communities in guts of germ-free cockroaches. Appl. Environ. Microbiol. 82, 1256–1263 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Salem, H., Florez, L., Gerardo, N. & Kaltenpoth, M. An out-of-body experience: The extracellular dimension for the transmission of mutualistic bacteria in insects. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142957 (2015).

    Google Scholar 

  • 23.

    Powell, J. E., Martinson, V. G., Urban-Mead, K. & Moran, N. A. Routes of acquisition of the gut microbiota of Apis mellifera. Appl. Environ. Microbiol. 80, 7378–7387 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 24.

    Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180 (2014).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Chen, B. et al. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 12, 2252–2262 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Hannula, S., Zhu, F., Heinen, R. & Bezemer, T. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10, 1254 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 27.

    Montezano, D. G. et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 26, 286–300 (2018).

    Article  Google Scholar 

  • 28.

    Day, R. et al. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 28, 196–201 (2017).

    Article  Google Scholar 

  • 29.

    Visôtto, L. E., Oliveira, M. G. A., Guedes, R. N. C., Ribon, A. O. B. & Good-God, P. I. V. Contribution of gut bacteria to digestion and development of the velvetbean caterpillar, Anticarsia gemmatalis. J. Insect Physiol. 55, 185–191 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 30.

    Xiang, H. et al. Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can. J. Microbiol. 1092, 1085–1092 (2006).

    Article  Google Scholar 

  • 31.

    Tang, X. et al. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE 7, e36978 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Gomes, A. F. F., Omoto, C. & Cônsoli, F. L. Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. J. Pest Sci. 93, 833–851 (2020).

    Article  Google Scholar 

  • 33.

    Acevedo, F. E. et al. Fall armyworm-associated gut bacteria modulate plant defense responses. Mol. Plant-Microbe Interact. 30, 127–137 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Gichuhi, J. et al. Diversity of fall armyworm, Spodoptera fugiperda and their bacterial community in Kenya. PeerJ 8, e8701 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Wagner, M. R., Busby, P. E. & Balint-Kurti, P. Analysis of leaf microbiome composition of near-isogenic maize lines differing in broad-spectrum disease resistance. New Phytol. 225, 2152–2165 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K. & Sessitsch, A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ. Exp. Bot. 97, 30–39 (2014).

    CAS  Article  Google Scholar 

  • 37.

    Keshri, J. et al. Microbiome dynamics during ensiling of corn with and without Lactobacillus plantarum inoculant. Appl. Microbiol. Biotechnol. 102, 4025–4037 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Mason, C. J. et al. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE 15, e0229848 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Chan, Q. W. T., Melathopoulos, A. P., Pernal, S. F. & Foster, L. J. The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae. BMC Genomics 10, 387 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 40.

    Mazumdar, T. et al. Survival strategies of Enterococcus mundtii in the gut of Spodoptera littoralis: A live report. bioRxiv. https://doi.org/10.1101/2020.02.03.932053 (2020).

  • 41.

    Mason, C. J., Jones, A. G. & Felton, G. W. Co-option of microbial associates by insects and their impact on plant–folivore interactions. Plant Cell Environ. https://doi.org/10.1111/pce.13430 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Mason, C. J., Rubert-Nason, K. F., Lindroth, R. L. & Raffa, K. F. Aspen defense chemicals influence midgut bacterial community composition of gypsy moth. J. Chem. Ecol. 41, 75–84 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 43.

    Chaturvedi, S., Rego, A., Lucas, L. K. & Gompert, Z. Sources of variation in the gut microbial community of Lycaeides melissa caterpillars. Sci. Rep. https://doi.org/10.1038/s41598-017-11781-1 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Fescemyer, H. W. et al. Maize toxin degrades peritrophic matrix proteins and stimulates compensatory transcriptome responses in fall armyworm midgut. Insect Biochem. Mol. Biol. 43, 280–291 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Hammer, T. J., McMillan, W. O. & Fierer, N. Metamorphosis of a butterfly-associated bacterial community. PLoS ONE 9, e86995 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 46.

    Chippendale, G. M. Metamorphic changes in haemolymph and midgut proteins of the southwestern corn borer, Diatraea grandiosella. J. Insect Physiol. 16, 1909–1920 (1970).

    CAS  Article  Google Scholar 

  • 47.

    Pechan, T., Cohen, A., Williams, W. P. & Luthe, D. S. Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc. Natl. Acad. Sci. 99, 13319–13323 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Mohan, S. et al. Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. J. Insect Physiol. 52, 21–28 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Tsuji, G. Y., Hoogenboom, G. & Thornton, P. K. Understanding Options for Agricultural Production Vol. 7 (Springer Science & Business Media, Berlin, 2013).

    Google Scholar 

  • 50.

    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).

    Article  Google Scholar 

  • 51.

    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    R Core Team. R: A Language and Environment for Statistical Computing. (2020).

  • 54.

    Kolde, R. pheatmap: Pretty Heatmaps. R package version 1.0.12. https://CRAN.R-project.org/package=pheatmap (2018).

  • 55.

    Kay, M. & Wobbrock, J. ARTool: Aligned Rank Transform for Nonparametric Factorial ANOVAs. https://doi.org/10.5281/zenodo.594511, R package version 0.10.7, https://github.com/mjskay/ARTool (2020).

  • 56.

    Wobbrock, J., Findlater, L., Gergle, D., & Higgins, J.. The Aligned Rank Transform for Nonparametric Factorial Analyses Using Only ANOVA Procedures. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ’11), 143–146.(2011).

  • 57.

    Raubenheimer, D. & Simpson, S. L. Analysis of covariance: An alternative to nutritional indices. Entomol. Exp. Appl. 62, 221–231 (1992).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Clare Balboni on environmental economics

    Researchers improve efficiency of next-generation solar cell material