in

Stress hormone-mediated antipredator morphology improves escape performance in amphibian tadpoles

  • 1.

    Tollrian, R. & Harvell, C. D. The Ecology and Evolution of Inducible Defenses (Princeton University Press, Princeton, 1998).

    Google Scholar 

  • 2.

    Ohgushi, T., Schmitz, O. J. & Holt, R. D. Trait-Mediated Indirect Interactions: Ecological and Evolutionary Perspectives (Cambridge University Press, Cambridge, 2013).

    Google Scholar 

  • 3.

    Ellers, J. & Stuefer, J. F. Frontiers in phenotypic plasticity research: new questions about mechanisms, induced responses, and ecological impacts. Evol. Ecol. 24, 523–526 (2010).

    Article  Google Scholar 

  • 4.

    Mitchell, M. D., Bairos-Novak, K. R. & Ferrari, M. C. Mechanisms underlying the control of responses to predator odours in aquatic prey. J. Exp. Biol. 220, 1937–1946 (2017).

    PubMed  Article  Google Scholar 

  • 5.

    Stankowich, T. & Blumstein, D. T. Fear in animals: a meta-analysis and review of risk assessment. Proc. Roy. Soc. B Biol. Sci. 272, 2627–2634 (2005).

    Google Scholar 

  • 6.

    Brönmark, C. & Hansson, L.-A. Chemical Ecology in Aquatic Systems (Oxford University Press, Oxford, 2012).

    Google Scholar 

  • 7.

    Middlemis Maher, J., Werner, E. E. & Denver, R. J. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proc. R. Soc. B Biol. Sci. 280, 20123075 (2013).

    Article  CAS  Google Scholar 

  • 8.

    Dennis, S. R., LeBlanc, G. A. & Beckerman, A. P. Endocrine regulation of predator-induced phenotypic plasticity. Oecologia 176, 625–635 (2014).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Matsunami, M. et al. Transcriptome analysis of predator- and prey-induced phenotypic plasticity in the Hokkaido salamander (Hynobius retardatus). Mol. Ecol. 24, 3064–3076 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Weiss, L. C. Sensory ecology of predator-induced phenotypic plasticity. Front. Behav. Neurosci. 12, 330 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 11.

    Hawlena, D. & Schmitz, O. J. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat. 176, 537–556 (2010).

    PubMed  Article  Google Scholar 

  • 12.

    Auld, J. R. & Relyea, R. A. Adaptive plasticity in predator-induced defenses in a common freshwater snail: altered selection and mode of predation due to prey phenotype. Evol. Ecol. 25, 189–202 (2011).

    Article  Google Scholar 

  • 13.

    Meuthen, D., Baldauf, S. A., Bakker, T. C. & Thünken, T. Neglected patterns of variation in phenotypic plasticity: age-and sex-specific antipredator plasticity in a cichlid fish. Am. Nat. 191, 475–490 (2018).

    PubMed  Article  Google Scholar 

  • 14.

    Schoeppner, N. M. & Relyea, R. A. Interpreting the smells of predation: how alarm cues and kairomones induce different prey defenses. Func. Ecol. 23, 1114–1121 (2009).

    Article  Google Scholar 

  • 15.

    Hettyey, A. et al. The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia 179, 699–710 (2015).

    ADS  PubMed  Article  Google Scholar 

  • 16.

    Fraker, M. E. et al. Characterization of an alarm pheromone secreted by amphibian tadpoles that induces behavioral inhibition and suppression of the neuroendocrine stress axis. Horm. Behav. 55, 520–529 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Hossie, T. J., Ferland-Raymond, B., Burness, G. & Murray, D. L. Morphological and behavioural responses of frog tadpoles to perceived predation risk: a possible role for corticosterone mediation?. Écoscience 17, 100–108 (2010).

    Article  Google Scholar 

  • 18.

    McDiarmid, R. W. & Altig, R. Tadpoles: the Biology of Anuran Larvae (University of Chicago Press, Chicago, 1999).

    Google Scholar 

  • 19.

    Relyea, R. A. Fine-tuned phenotypes: tadpole plasticity under 16 combinations of predators and competitors. Ecology 85, 172–179 (2004).

    Article  Google Scholar 

  • 20.

    Wilson, R. S., Kraft, P. G. & Van Damme, R. Predator-specific changes in the morphology and swimming performance of larval Rana lessonae. Func. Ecol. 19, 238–244 (2005).

    Article  Google Scholar 

  • 21.

    Van Buskirk, J. & McCollum, S. A. Influence of tail shape on tadpole swimming performance. J. Exp. Biol. 203, 2149–2158 (2000).

    PubMed  Google Scholar 

  • 22.

    Eidietis, L. Size-related performance variation in the wood frog (Rana sylvatica) tadpole tactile-stimulated startle response. Can. J. Zool. 83, 1117–1127 (2005).

    Article  Google Scholar 

  • 23.

    Perotti, M. G., Pueta, M., Jara, F. G., Úbeda, C. A. & Moreno Azocar, D. L. Lack of functional link in the tadpole morphology induced by predators. Curr. Zool. 62, 227–235 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Mori, T. et al. The constant threat from a non-native predator increases tail muscle and fast-start swimming performance in Xenopus tadpoles. Biol. Open 6, 1726–1733 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Lindgren, B., Orizaola, G. & Laurila, A. Interacting effects of predation risk and resource level on escape speed of amphibian larvae along a latitudinal gradient. J. Evol. Biol. 31, 1216–1226 (2018).

    PubMed  Article  Google Scholar 

  • 26.

    Van Buskirk, J., Anderwald, P., Lüpold, S., Reinhardt, L. & Schuler, H. The lure effect, tadpole tail shape, and the target of dragonfly strikes. J. Herp. 37, 420–424 (2003).

    Article  Google Scholar 

  • 27.

    Dijk, B., Laurila, A., Orizaola, G. & Johansson, F. Is one defence enough? Disentangling the relative importance of morphological and behavioural predator-induced defences. Behav. Ecol. Sociobiol. 70, 237–246 (2016).

    Article  Google Scholar 

  • 28.

    Glennemeier, K. A. & Denver, R. J. Moderate elevation of corticosterone content affects fitness components in northern leopard frog (Rana pipiens) tadpoles. Gen. Comp. Endocrinol. 127, 16–25 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Glennemeier, K. A. & Denver, R. J. Role for corticoids in mediating the response of Rana pipiens tadpoles to intraspecific competition. J. Exp. Zool. 292, 32–40 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Muir, A. M., Vecsei, P. & Krueger, C. C. A perspective on perspectives: methods to reduce variation in shape analysis of digital images. Trans. Am. Fish. Soc. 141, 1161–1170 (2012).

    Article  Google Scholar 

  • 31.

    Fraker, M. E. & Luttbeg, B. Predator-prey space use and the spatial distribution of predation events. Behaviour 149, 555–574 (2012).

    Article  Google Scholar 

  • 32.

    Denver, R. J. Hormonal correlates of environmentally induced metamorphosis in the western spadefoot toad, Scaphiopus hammondii. Gen. Comp. Endocrinol. 110, 326–336 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).

    Article  Google Scholar 

  • 34.

    R Core Team. R: A language and environment for statistical computing, version 3.6.1. (R Foundation for Statistical Computing, 2019).

  • 35.

    Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Soft. 69, 1–33 (2016).

    Article  Google Scholar 

  • 36.

    Therneau, T. M. & Lumley, T. R Package ‘survival’ version 3.1-8 (2019).

  • 37.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 541–554 (2001).

    Article  Google Scholar 

  • 39.

    Berner, D. Size correction in biology: how reliable are approaches based on (common) principal component analysis?. Oecologia 166, 961–971 (2011).

    ADS  PubMed  Article  Google Scholar 

  • 40.

    Humphreys, R. K. & Ruxton, G. D. What is known and what is not yet known about deflection of the point of a predator’s attack. Biol. J. Linn. Soc. 123, 483–495 (2018).

    Article  Google Scholar 

  • 41.

    Blair, J. & Wassersug, R. J. Variation in the pattern of predator-induced damage to tadpole tails. Copeia 2000, 390–401 (2000).

    Article  Google Scholar 

  • 42.

    Van Buskirk, J., Ferrari, M., Kueng, D., Näpflin, K. & Ritter, N. Prey risk assessment depends on conspecific density. Oikos 120, 1235–1239 (2011).

    Article  Google Scholar 

  • 43.

    McCoy, M. W. Conspecific density determines the magnitude and character of predator-induced phenotype. Oecologia 153, 871–878 (2007).

    ADS  PubMed  Article  Google Scholar 

  • 44.

    Van Buskirk, J. & McCollum, S. A. Functional mechanisms of an inducible defence in tadpoles: morphology and behaviour influence mortality risk from predation. J. Evol. Biol 13, 336–347 (2000).

    Article  Google Scholar 

  • 45.

    Van Buskirk, J. Phenotypic lability and the evolution of predator-induced plasticity in tadpoles. Evolution 56, 361–370 (2002).

    PubMed  Article  Google Scholar 

  • 46.

    Hossie, T., Landolt, K. & Murray, D. L. Determinants and co-expression of anti-predator responses in amphibian tadpoles: a meta-analysis. Oikos 126, 173–184 (2017).

    Article  Google Scholar 

  • 47.

    Laughlin, D. C. & Messier, J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol. Evol. 30, 487–496 (2015).

    PubMed  Article  Google Scholar 

  • 48.

    Steiner, U. K. & Van Buskirk, J. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff. PLoS ONE 4, e6160 (2009).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 49.

    Ferrari, M. C., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can. J. Zool. 88, 698–724 (2010).

    Article  Google Scholar 

  • 50.

    Luttbeg, B., Ferrari, M. C., Blumstein, D. T. & Chivers, D. P. Safety cues can give prey more valuable information than danger cues. Am. Nat. 195, 636–648 (2020).

    PubMed  Article  Google Scholar 

  • 51.

    Schmitz, O. J. Predator and prey functional traits: understanding the adaptive machinery driving predator–prey interactions. F1000Research 6, 1767 (2017).

    PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Clare Balboni on environmental economics

    Researchers improve efficiency of next-generation solar cell material