in

Primary and secondary aerenchyma oxygen transportation pathways of Syzygium kunstleri (King) Bahadur & R. C. Gaur adventitious roots in hypoxic conditions

  • 1.

    Boyer, J. S. Plant productivity and environment. Science 218, 443–448 (1982).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Abiko, T. et al. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp mays). Plant Cell Environ. 35, 1618–1630 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Jackson, M. B. Ethylene and responses of plants to soil waterlogging and submergence. Annu. Rev. Plant Physiol. Plant Mol. Biol. 36, 145–174 (1985).

    CAS  Article  Google Scholar 

  • 4.

    Colmer, T. D. & Voesenek, L. A. C. J. Flooding tolerance: Suites of plant traits in variable environments. Funct. Plant Biol. 36, 665–681 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Bailey-Serres, J. & Voesenek, L. A. C. J. Flooding stress: Acclimations and genetic diversity. Annu. Rev. Plant Biol. 59, 313–339 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Colmer, T. D. & Greenway, H. Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J. Exp. Bot. 62, 39–57 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Huang, S., Greenway, H. & Colmer, T. D. Responses of coleoptiles of intact rice seedlings to anoxia: K+ net uptake from the external solution and translocation from the caryopses. Ann. Bot. 91, 271–278 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Vartapetian, B. B. et al. Functional electron microscopy in studies of plant response and adaptation to anaerobic stress. Ann. Bot. 91, 155–172 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Visser, E. J. W., Voesenek, L. A. C. J., Vartapetian, B. B. & Jackson, M. B. Flooding and plant growth. Ann. Bot. 91, 107–109 (2003).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  • 10.

    Voesenek, L. A. & Bailey-Serres, J. Flood adaptive traits and processes: An overview. New Phytol. 206, 57–73 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Evans, D. E. Aerenchyma formation. New Phytol. 161, 35–49 (2004).

    Article  Google Scholar 

  • 12.

    Armstrong, W. Aeration in higher plants. In Advances in Botanical Research (ed. Woolhouse, H. W.) (Academic Press, Burlington, 1980).

    Google Scholar 

  • 13.

    Colmer, T. D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann. Bot. 91, 301–309 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Jackson, M. B. & Armstrong, W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology 1, 274–287 (1999).

    CAS  Article  Google Scholar 

  • 15.

    Seago, J. L. et al. A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma. Ann. Bot. 96, 565–579 (2005).

    PubMed  Article  Google Scholar 

  • 16.

    Drew, M. C., He, C. J. & Morgan, P. W. Programmed cell death and aerenchyma formation in roots. Trends Plant Sci. 5, 123–127 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Yamauchi, T., Rajhi, I. & Nakazono, M. Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal. Behav. 6, 759–761 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Takahashi, H., Yamauchi, T., Colmer, T. D. & Nakazono, M. Aerenchyma formation in plants. in Low-Oxygen Stress in Plants: Oxygen Sensing and Adaptive Responses to Hypoxia 247–265. (Springer, Wien, 2014).

  • 19.

    Stevens, K. J., Peterson, R. L. & Reader, R. J. The aerenchymatous phellem of Lythrum salicaria (L.): A pathway for gas transport and its role in flood tolerance. Ann. Bot. 89, 621–625 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Shimamura, S., Mochizuki, T., Nada, Y. & Fukuyama, M. Formation and function of secondary aerenchyma in hypocotyl, roots and nodules of soybean (Glycine max) under flooded conditions. Plant Soil 251, 351–359 (2003).

    CAS  Article  Google Scholar 

  • 21.

    Shimamura, S., Yamamoto, R., Nakamura, T., Shimada, S. & Komatsu, S. Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Ann. Bot. 106, 277–284 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    De Simone, O. et al. Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon floodplain tree species. Funct. Plant Biol. 29, 1025–1035 (2002).

    PubMed  Article  Google Scholar 

  • 23.

    Colmer, T. D. & Pedersen, O. Oxygen dynamics in submerged rice (Oryza sativa). New Phytol. 178, 326–334 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Haase, K., De Simone, O., Junk, W. J. & Schmidt, W. Internal oxygen transport in cuttings from flood-adapted várzea tree species. Tree Physiol. 23, 1069–1076 (2003).

    PubMed  Article  Google Scholar 

  • 25.

    Sou, H. D., Masumori, M., Kurokochi, H. & Tange, T. Histological observation of primary and secondary aerenchyma formation in adventitious roots of Syzygium kunstleri (King) Bahadur and R. C. Gaur grown in hypoxic medium. Forests 10, 137 (2019).

    Article  Google Scholar 

  • 26.

    Rubinigg, M., Stulen, I., Elzenga, J. T. M. & Colmer, T. D. Spatial patterns of radial oxygen loss and nitrate net flux along adventitious roots of rice raised in aerated or stagnant solution. Funct. Plant Biol. 29, 1475–1481 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Kotula, L., Ranathunge, K., Schreiber, L. & Steudle, E. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J. Exp. Bot. 60, 2155–2167 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Shiono, K. et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann. Bot. 107, 89–99 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Watanabe, K., Nishiuchi, S., Kulichikhin, K. & Nakazono, M. Does suberin accumulation in plant roots contribute to waterlogging tolerance?. Front. Plant Sci. 4, 178 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Khan, N. et al. Root iron plaque on wetland plants as dynamic pool of nutrients and contaminants. In Advances in Agronomy Vol. 138 (ed. Sparks, D. L.) 1–96 (Academic Press, Cambridge, 2016).

    Google Scholar 

  • 31.

    Uteau, D. et al. Oxygen and redox potential gradients in the rhizosphere of alfalfa grown on a loamy soil. J. Plant Nutr. Soil Sci. 178, 278–287 (2015).

    CAS  Article  Google Scholar 

  • 32.

    Tian, C., Wang, C., Tian, Y., Wu, X. & Xiao, B. Root radial oxygen loss and the effects on rhizosphere microarea of two submerged plants. Polish J. Environ. Studies 24, 1795–1802 (2015).

    Article  Google Scholar 

  • 33.

    Shimamura, S., Mochizuki, T., Nada, Y. & Fukuyama, M. Secondary aerenchyma formation and its relation to nitrogen fixation in root nodules of soybean plants (Glycine max) grown under flooded conditions. Plant Product. Sci. 5, 294–300 (2002).

    CAS  Article  Google Scholar 

  • 34.

    Shiba, H. & Daimon, H. Histological observation of secondary aerenchyma formed immediately after flooding in Sesbania cannabina and S. rostrata. Plant Soil 255, 209–215 (2003).

    CAS  Article  Google Scholar 

  • 35.

    Somavilla, N. S. & Graciano-Ribeiro, D. Ontogeny and characterization of aerenchymatous tissues of Melastomataceae in the flooded and well-drained soils of a Neotropical savanna. Flora 207, 212–222 (2012).

    Article  Google Scholar 

  • 36.

    Thomas, A. L., Guerreiro, S. M. C. & Sodek, L. Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann. Bot. 96, 1191–1198 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Wiengweera, A., Greenway, H. & Thomson, C. J. The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Ann. Bot. 80, 115–123 (1997).

    Article  Google Scholar 

  • 38.

    Dacey, J. W. Internal winds in water lilies: An adaptation for life in anaerobic sediments. Science 210, 1017–1019 (1980).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 39.

    Drew, M. C., Saglio, P. H. & Pradet, A. J. P. Larger adenylate energy charge and ATP/ADP ratios in aerenchymatous roots of Zea mays in anaerobic media as a consequence of improved internal oxygen transport. Planta 165, 51–58 (1985).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Drew, M. C. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 223–250 (1997).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Shimamura, S., Yoshida, S. & Mochizuki, T. Cortical aerenchyma formation in hypocotyl and adventitious roots of Luffa cylindrica subjected to soil flooding. Ann. Bot. 100, 1431–1439 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Armstrong, W., Cousins, D., Armstrong, J., Turner, D. W. & Beckett, P. M. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: A microelectrode and modelling study with Phragmites australis. Ann. Bot. 86, 687–703 (2000).

    Article  Google Scholar 

  • 43.

    Herzog, M. & Pedersen, O. Partial versus complete submergence: Snorkelling aids root aeration in Rumex palustris but not in R. acetosa. Plant Cell Environ. 37, 2381–2390 (2014).

    CAS  PubMed  Google Scholar 

  • 44.

    Tanaka, K., Masumori, M., Yamanoshita, T. & Tange, T. Morphological and anatomical changes of Melaleuca cajuputi under submergence. Trees 25, 695–704 (2011).

    Article  Google Scholar 

  • 45.

    Armstrong, W. Polarographic oxygen electrodes and their use in plant aeration studies. Proc. R. Soc. Edinburgh Sect. B. Biol. Sci. 102, 511–527 (1994).

    Article  Google Scholar 

  • 46.

    Hitchman, M. L. Measurement of Dissolved Oxygen (Wiley, New York, 1978).

    Google Scholar 

  • 47.

    Ober, E. S. & Sharp, R. E. A microsensor for direct measurement of O2 partial pressure within plant tissues. J. Exp. Bot. 47, 447–454 (1996).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    An aggressive market-driven model for US fusion power development

    King Climate Action Initiative announces new research to test and scale climate solutions