in

Isotopic discrimination in helminths infecting coral reef fishes depends on parasite group, habitat within host, and host stable isotope value

  • 1.

    Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546. https://doi.org/10.1111/j.1461-0248.2008.01174.x (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Welicky, R. L., Demopoulos, A. W. J. & Sikkel, P. C. Host-dependent differences in resource use associated with Anilocra spp. parasitism in two coral reef fishes, as revealed by stable carbon and nitrogen isotope analyses. Mar. Ecol. https://doi.org/10.1111/maec.12413 (2017).

    Article  Google Scholar 

  • 3.

    Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518. https://doi.org/10.1038/nature06970 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 4.

    Dunne, J. A. et al. Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biol. 11, e1001579 (2013).

    CAS  Article  Google Scholar 

  • 5.

    Poulin, R. Parasite species richness in New Zealand fishes: A grossly underestimated component of biodiversity?. Divers. Distrib. 10, 31–37 (2004).

    Article  Google Scholar 

  • 6.

    Justine, J.-L. Parasite biodiversity in a coral reef fish: Twelve species of monogeneans on the gills of the grouper Epinephelus maculatus (Perciformes: Serranidae) off New Caledonia, with a description of eight new species of Pseudorhabdosynochus (Monogenea: Diplectanidae). Syst. Parasitol. 66, 81 (2007).

    Article  Google Scholar 

  • 7.

    Lafferty, K. D. & Kuris, A. M. Trophic strategies, animal diversity and body size. Trends Ecol. Evol. 17, 507–513 (2002).

    Article  Google Scholar 

  • 8.

    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140. https://doi.org/10.1016/0016-7037(84)90204-7 (1984).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Fry, B. Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol. Oceanogr. 33, 1182–1190. https://doi.org/10.4319/lo.1988.33.5.1182 (1988).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:usitet]2.0.co;2 (2002).

    Article  Google Scholar 

  • 11.

    McCutchan, J. H., Lewis, W. M. Jr., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x (2003).

    CAS  Article  Google Scholar 

  • 12.

    Caut, S., Angulo, E. & Courchamp, F. Variation in discrimination factors (Δ15N and Δ13C): The effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46, 443–453. https://doi.org/10.1111/j.1365-2664.2009.01620.x (2009).

    CAS  Article  Google Scholar 

  • 13.

    Pinnegar, J. K., Campbell, N. & Polunin, N. V. C. Unusual stable isotope fractionation patterns observed for fish host–parasite trophic relationships. J. Fish Biol. 59, 494–503. https://doi.org/10.1111/j.1095-8649.2001.tb02355.x (2001).

    Article  Google Scholar 

  • 14.

    Thieltges, D. W., Goedknegt, M. A., O’Dwyer, K., Senior, A. M. & Kamiya, T. Parasites and stable isotopes: A comparative analysis of isotopic discrimination in parasitic trophic interactions. Oikos 128, 1329–1339. https://doi.org/10.1111/oik.06086 (2019).

    Article  Google Scholar 

  • 15.

    Deudero, S., Pinnegar, J. K. & Polunin, N. V. C. Insights into fish host-parasite trophic relationships revealed by stable isotope analysis. Dis. Aquat. Org. 52, 77–86 (2002).

    Article  Google Scholar 

  • 16.

    Power, M. & Klein, G. M. Fish host–cestode parasite stable isotope enrichment patterns in marine, estuarine and freshwater fishes from northern Canada. Isot. Environ. Health Stud. 40, 257–266 (2004).

    CAS  Article  Google Scholar 

  • 17.

    Navarro, J. et al. Isotopic discrimination of stable isotopes of nitrogen (δ15N) and carbon (δ13C) in a host-specific holocephalan tapeworm. J. Helminthol. 88, 371–375 (2014).

    CAS  Article  Google Scholar 

  • 18.

    Kamiya, E., Urabe, M. & Okuda, N. Does atypical 15N and 13C enrichment in parasites result from isotope ratio variation of host tissues they are infected?. Limnology https://doi.org/10.1007/s10201-019-00596-w (2019).

    Article  Google Scholar 

  • 19.

    Kanaya, G. et al. Application of stable isotopic analyses for fish host–parasite systems: An evaluation tool for parasite-mediated material flow in aquatic ecosystems. Aquat. Ecol. 53, 217–232. https://doi.org/10.1007/s10452-019-09684-6 (2019).

    CAS  Article  Google Scholar 

  • 20.

    Gilbert, B. M. et al. You are how you eat: Differences in trophic position of two parasite species infecting a single host according to stable isotopes. Parasitol. Res. 1–8. https://doi.org/10.1007/s00436-020-06619-1 (2020).

  • 21.

    Demopoulos, A. W. & Sikkel, P. C. Enhanced understanding of ectoparasite–host trophic linkages on coral reefs through stable isotope analysis. Int. J. Parasitol. Parasites Wildl. 4, 125–134 (2015).

    Article  Google Scholar 

  • 22.

    Jenkins, W. G., Demopoulos, A. W., Nicholson, M. D. & Sikkel, P. C. Stable isotope dynamics of herbivorous reef fishes and their ectoparasites. Diversity 12, 429 (2020).

    CAS  Article  Google Scholar 

  • 23.

    Jenkins, W. G., Demopoulos, A. W. J. & Sikkel, P. C. Host feeding ecology and trophic position significantly influence isotopic discrimination between a generalist ectoparasite and its hosts: Implications for parasite–host trophic studies. Food Webs 16, e00092. https://doi.org/10.1016/j.fooweb.2018.e00092 (2018).

    Article  Google Scholar 

  • 24.

    International Helminth Genomes, C. Comparative genomics of the major parasitic worms. Nat. Genet. 51, 163–174. https://doi.org/10.1038/s41588-018-0262-1 (2019).

    CAS  Article  Google Scholar 

  • 25.

    Tyagi, R., Rosa, B. A., Lewis, W. G. & Mitreva, M. Pan-phylum comparison of nematode metabolic potential. PLoS Negl. Trop. Dis. 9, e0003788. https://doi.org/10.1371/journal.pntd.0003788 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Yohannes, E., Grimm, C., Rothhaupt, K.-O. & Behrmann-Godel, J. The effect of parasite infection on stable isotope turnover rates of δ15N, δ13C and δ34S in multiple tissues of Eurasian perch Perca fluviatilis. PLoS ONE 12, e0169058. https://doi.org/10.1371/journal.pone.0169058 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Behrmann-Godel, J. & Yohannes, E. Multiple isotope analyses of the pike tapeworm Triaenophorus nodulosus reveal peculiarities in consumer–diet discrimination patterns. J. Helminthol. 89, 238–243. https://doi.org/10.1017/S0022149X13000849 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 28.

    Nachev, M. et al. Understanding trophic interactions in host-parasite associations using stable isotopes of carbon and nitrogen. Parasites Vectors 10, 90. https://doi.org/10.1186/s13071-017-2030-y (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Goedknegt, M. A. et al. Trophic relationship between the invasive parasitic copepod Mytilicola orientalis and its native blue mussel (Mytilus edulis) host. Parasitology 145, 814–821. https://doi.org/10.1017/S0031182017001779 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Persson, M. E., Larsson, P. & Stenroth, P. Fractionation of δ15N and δ13C for Atlantic salmon and its intestinal cestode Eubothrium crassum. J. Fish Biol. 71, 441–452. https://doi.org/10.1111/j.1095-8649.2007.01500.x (2007).

    CAS  Article  Google Scholar 

  • 31.

    McMahon, K. W. & McCarthy, M. D. Embracing variability in amino acid δ15N fractionation: Mechanisms, implications, and applications for trophic ecology. Ecosphere 7, e01511. https://doi.org/10.1002/ecs2.1511 (2016).

    Article  Google Scholar 

  • 32.

    Brouwers, J. F., Smeenk, I. M., van Golde, L. M. & Tielens, A. G. The incorporation, modification and turnover of fatty acids in adult Schistosoma mansoni. Mol. Biochem. Parasitol. 88, 175–185 (1997).

    CAS  Article  Google Scholar 

  • 33.

    Briand, M. J., Bonnet, X., Goiran, C., Guillou, G. & Letourneur, Y. Major sources of organic matter in a complex coral reef lagoon: Identification from isotopic signatures (δ13C and δ15N). PLoS ONE 10, e0131555–e0131555. https://doi.org/10.1371/journal.pone.0131555 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Greenwood, N. D. W., Sweeting, C. J. & Polunin, N. V. C. Elucidating the trophodynamics of four coral reef fishes of the Solomon Islands using δ15N and δ13C. Coral Reefs 29, 785–792. https://doi.org/10.1007/s00338-010-0626-1 (2010).

    ADS  Article  Google Scholar 

  • 35.

    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).

    Article  Google Scholar 

  • 36.

    McMahon, K. W., Thorrold, S. R., Elsdon, T. S. & McCarthy, M. D. Trophic discrimination of nitrogen stable isotopes in amino acids varies with diet quality in a marine fish. Limnol. Oceanogr. 60, 1076–1087. https://doi.org/10.1002/lno.10081 (2015).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Mill, A. C., Pinnegar, J. K. & Polunin, N. V. C. Explaining isotope trophic-step fractionation: Why herbivorous fish are different. Funct. Ecol. 21, 1137–1145. https://doi.org/10.1111/j.1365-2435.2007.01330.x (2007).

    Article  Google Scholar 

  • 38.

    Kulbicki, M., Guillemot, N. & Amand, M. A general approach to length-weight relationships for New Caledonian lagoon fishes. Cybium 29, 235–252 (2005).

    Google Scholar 

  • 39.

    Woodland, D. J. Revision of the fish family Siganidae with descriptions of two new species and comments on distribution and biology. Indo-Pacific Fishes, Vol. 19 (Bishop Museum, 1990).

  • 40.

    Moléana, T. Etude de la reproduction, de l’alimentation et de la composition en acides gras du picot rayé Siganus lineatus. Application à la domestication d’une nouvelle espèce tropicale pour la piscuculture marine (Nouvelle-Calédonie; Aqualagon SARL), PhD Thesis, Université de la Nouvelle-Calédonie (2016).

  • 41.

    Justine, J.-L., Briand, M. J. & Bray, R. A. A quick and simple method, usable in the field, for collecting parasites in suitable condition for both morphological and molecular studies. Parasitol. Res. 111, 341–351 (2012).

    Article  Google Scholar 

  • 42.

    Pinnegar, J. K. & Polunin, N. V. C. Differential fractionation of δ13C and δ15N among fish tissues: Implications for the study of trophic interactions. Funct. Ecol. 13, 225–231. https://doi.org/10.1046/j.1365-2435.1999.00301.x (1999).

    Article  Google Scholar 

  • 43.

    Abrantes, K. & Sheaves, M. Incorporation of terrestrial wetland material into aquatic food webs in a tropical estuarine wetland. Estuar. Coast. Shelf Sci. 80, 401–412 (2008).

    ADS  Article  Google Scholar 

  • 44.

    Briand, M. J., Bonnet, X., Guillou, G. & Letourneur, Y. Complex food webs in highly diversified coral reefs: Insights from δ13C and δ15N stable isotopes. Food Webs 8, 12–22. https://doi.org/10.1016/j.fooweb.2016.07.002 (2016).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    An aggressive market-driven model for US fusion power development

    King Climate Action Initiative announces new research to test and scale climate solutions