in

DNA traces the origin of honey by identifying plants, bacteria and fungi

  • 1.

    Bogdanov, S., Ruoff, K. & Persano Oddo, L. Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie 35, S4–S17 (2004).

    Article  Google Scholar 

  • 2.

    Kwakman, P. H. S., te Velde, A. A., de Boer, L., Vandenbroucke-Grauls, C. M. J. E. & Zaat, S. A. J. Two major medicinal honeys have different mechanisms of bactericidal activity. PLoS ONE 6, e17709 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Lu, J. et al. The effect of New Zealand Kanuka, Manuka and Clover Honeys on bacterial growth dynamics and cellular morphology varies according to the species. PLoS ONE 8, e55898 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Salonen, A., Ollikka, T., Grönlund, E., Ruottinen, L. & Julkunen-Tiitto, R. Pollen analyses of honey from Finland. Grana 48, 281–289 (2009).

    Article  Google Scholar 

  • 5.

    Balkanska, R., Stefanova, K. & Stoikova-Grigorova, R. Main honey botanical components and techniques for identification: a review. J. Apic. Res. https://doi.org/10.1080/00218839.2020.1765481 (2020).

    Article  Google Scholar 

  • 6.

    Soares, S., Amaral, J. S., Oliveira, M. B. P. P. & Mafra, I. A comprehensive review on the main honey authentication issues: production and origin. Compr. Rev. Food Sci. Food Saf. 16, 1072–1100 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Beckmann, K., Beckh, G., Luellmann, C. & Speer, K. Characterization of filtered honey by electrophoresis of enzyme fractions. Apidologie 42, 59–66 (2011).

    CAS  Article  Google Scholar 

  • 8.

    Anklam, E. A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem. 63, 549–562 (1998).

    CAS  Article  Google Scholar 

  • 9.

    Von Der Ohe, W., Persano Oddo, L., Piana, M. L., Morlot, M. & Martin, P. Harmonized methods of melissopalynology. Apidologie 35, 18–25 (2004).

    Article  Google Scholar 

  • 10.

    Bell, K. L. et al. Pollen DNA barcoding: Current applications and future prospects. Genome 59, 629–640 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Guertler, P., Eicheldinger, A., Muschler, P., Goerlich, O. & Busch, U. Automated DNA extraction from pollen in honey. Food Chem. 149, 302–306 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Hawkins, J. et al. Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigating honey bee foraging preferences. PLoS ONE 10, e0134735 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Valentini, A., Miquel, C. & Taberlet, P. DNA barcoding for honey biodiversity. Diversity 2, 610–617 (2010).

    CAS  Article  Google Scholar 

  • 14.

    Prosser, S. W. J. & Hebert, P. D. N. Rapid identification of the botanical and entomological sources of honey using DNA metabarcoding. Food Chem. 214, 183–191 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Olivieri, C., Marota, I., Rollo, F. & Luciani, S. Tracking plant, fungal, and bacterial DNA in honey specimens. J. Forensic Sci. 57, 222–227 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Snowdon, J. A. & Cliver, D. O. Microorganisms in honey. Int. J. Food Microbiol. 31, 1–26 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Manirajan, B. A. et al. Diversity, specificity, co-occurrence and hub taxa of the bacterial-fungal pollen microbiome. FEMS Microbiol. Ecol. 94, 1–11 (2018).

    Article  CAS  Google Scholar 

  • 18.

    Anderson, K. E. et al. Microbial ecology of the hive and pollination landscape: Bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS ONE 8, e83125 (2013).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 19.

    Aizenberg-Gershtein, Y., Izhaki, I. & Halpern, M. Do honeybees shape the bacterial community composition in floral nectar?. PLoS ONE 8, e83125 (2013).

    ADS  Article  CAS  Google Scholar 

  • 20.

    Fridman, S., Izhaki, I., Gerchman, Y. & Halpern, M. Bacterial communities in floral nectar. Environ. Microbiol. Rep. 4, 97–104 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Nevas, M. et al. High prevalence of Clostridium botulinum types A and B in honey samples detected by polymerase chain reaction. Int. J. Food Microbiol. 72, 45–52 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. U. S. A. 109, 11002–11007 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Oksanen, J. et al. Package ‘vegan’ Title Community Ecology Package Version 2.5-6. (2019).

  • 25.

    Larsson, J. Area-Proportional Euler and Venn Diagrams with Ellipses [R package eulerr version 6.1.0].

  • 26.

    Warton, D. I. et al. So many variables: Joint modeling in community ecology. Trends Ecol. Evol. 30, 766–779 (2015).

    PubMed  Article  Google Scholar 

  • 27.

    Tjur, T. Coefficients of determination in logistic regression models—A new proposal: The coefficient of discrimination. Am. Stat. 63, 366–372 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  • 28.

    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models (2020).https://doi.org/10.1017/S0376892997000088

  • 29.

    Guisan, A. et al. Measuring model accuracy: Which metrics to use? in Habitat Suitability and Distribution Models 241–269 (Cambridge University Press, 2017). doi:https://doi.org/10.1017/9781139028271.022.

  • 30.

    Tikhonov, G. et al. Joint species distribution modelling with the r-package HMSC. Methods Ecol. Evol. 11, 442–447 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Moran, N. A., Hansen, A. K., Powell, J. E. & Sabree, Z. L. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS ONE 7, 1–10 (2012).

    Google Scholar 

  • 32.

    Fünfhaus, A., Ebeling, J. & Genersch, E. Bacterial pathogens of bees. Curr. Opin. Insect Sci. 26, 89–96 (2018).

    PubMed  Article  Google Scholar 

  • 33.

    Fries, I. Nosema ceranae in European honey bees (Apis mellifera). J. Invertebr. Pathol. 103, (2010).

  • 34.

    Balvočiute, M. & Huson, D. H. SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare?. BMC Genomics 18, 114 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Meiklejohn, K. A., Damaso, N. & Robertson, J. M. Assessment of BOLD and GenBank—their accuracy and reliability for the identification of biological materials. PLoS One 14 (2019).

  • 36.

    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, 259–264 (2018).

    Article  CAS  Google Scholar 

  • 37.

    Sickel, W. et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 15, 1–9 (2015).

    Article  CAS  Google Scholar 

  • 38.

    Cole, J. R. et al. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, 141–145 (2008).

    Article  CAS  Google Scholar 

  • 39.

    Bell, K. L., Loeffler, V. M. & Brosi, B. J. An rbcL reference library to aid in the identification of plant species mixtures by DNA metabarcoding. Appl. Plant Sci. 5, 1600110 (2017).

    Article  Google Scholar 

  • 40.

    Edgar, R. C. & Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476–3482 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ https://doi.org/10.7717/peerj.2584 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Vesterinen, E. J., Kaunisto, K. M. & Lilley, T. M. A global class reunion with multiple groups feasting on the declining insect smorgasbord. Sci. Rep. 10, 16595 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Barcaccia, G., Lucchin, M. & Cassandro, M. DNA barcoding as a molecular tool to track down mislabeling and food piracy. Diversity 8, 2 (2015).

    Article  CAS  Google Scholar 

  • 45.

    Zábrodská, B. & Vorlová, L. Adulteration of honey and available methods for detection—a review. Acta Vet. Brno 83, S85–S102 (2014).

    Article  Google Scholar 

  • 46.

    Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321 (2003).

    CAS  Article  Google Scholar 

  • 47.

    DeSalle, R. & Goldstein, P. Review and Interpretation of Trends in DNA Barcoding. Front. Ecol. Evol. 7, 302 (2019).

    Article  Google Scholar 

  • 48.

    Hawkins, J. et al. Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigating honey bee foraging preferences. PLoS One 10 (2015).

  • 49.

    De Vere, N. et al. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci. Rep. 7, 1–10 (2017).

    Article  CAS  Google Scholar 

  • 50.

    Lucek, K. et al. Metabarcoding of honey to assess differences in plant-pollinator interactions between urban and non-urban sites. https://doi.org/10.1007/s13592-019-00646-3.

  • 51.

    Bruni, I. et al. A DNA barcoding approach to identify plant species in multiflower honey. Food Chem. 170, 308–315 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Laha, R. C. et al. Meta-barcoding in combination with palynological inference is a potent diagnostic marker for honey floral composition. AMB Express 7, 132 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 53.

    Utzeri, V. J., Ribani, A. & Fontanesi, L. Authentication of honey based on a DNA method to differentiate Apis mellifera subspecies: Application to Sicilian honey bee (A. m. siciliana) and Iberian honey bee (A. m. iberiensis) honeys. Food Control 91, 294–301 (2018).

    CAS  Article  Google Scholar 

  • 54.

    Bovo, S. et al. Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLoS ONE 13, e0205575 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 55.

    Bovo, S., Utzeri, V. J., Ribani, A. & Cabbri, R. Shotgun sequencing of honey DnA can describe honey bee derived environmental signatures and the honey bee hologenome complexity. https://doi.org/10.1038/s41598-020-66127-1.

  • 56.

    Vesterinen, E. J., Puisto, A. I. E., Blomberg, A. S. & Lilley, T. M. Table for five, please: Dietary partitioning in boreal bats. Ecol. Evol. 8, 10914–10937 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Vesterinen, E. J. et al. What you need is what you eat? Prey selection by the bat Myotis daubentonii. Mol. Ecol. 25, 1581–1594 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Functional Genomics Unit, University of Helsinki, Finland. www.helsinki.fi/en/infrastructures/genome-analysis/biomedicum-functional-genomics-unit.

  • 59.

    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 60.

    Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  Article  Google Scholar 

  • 64.

    Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 39, D28–D31 (2011).

    Article  CAS  Google Scholar 

  • 65.

    Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Lee, T., Alemseged, Y. & Mitchell, A. Dropping Hints: Estimating the diets of livestock in rangelands using DNA metabarcoding of faeces. Metabarcoding Metagenomics 2, e22467 (2018).

    Article  Google Scholar 

  • 67.

    Alberdi, A., Garin, I., Aizpurua, O. & Aihartza, J. The foraging ecology of the Mountain Long-eared bat Plecotus macrobullaris revealed with DNA mini-barcodes. PLoS One 7, (2012).

  • 68.

    Bolger, A. M., Lohse, M. & Usadel, B. Genome analysis Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 1–13 (2019).

    Article  CAS  Google Scholar 

  • 70.

    National Center for Biotechnology Information (NCBI); Bethesda (MD): National Library of Medicine (US). https://www.ncbi.nlm.nih.gov/ (1988).

  • 71.

    Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput. Sci. 2017, e104 (2017).

    Article  Google Scholar 

  • 72.

    Breitwieser, F. P. & Salzberg, S. L. Pavian: Interactive analysis of metagenomics data for microbiome studies and pathogen identification. Bioinformatics 36, 1303–1304 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 73.

    DIN (Deutsches Institut für Normung),. Untersuchung von Honig – Bestimmung der relativen Pollenhäufigkeit. DIN 10760, 2002–2005 (2002).

    Google Scholar 

  • 74.

    Persano Oddo, L. et al. Main European unifloral honeys: descriptive sheets 1. Apidologie 35, 38–81 (2004).

    Article  Google Scholar 

  • 75.

    Piper, A. M. et al. Prospects and challenges of implementing DNA metabarcoding for high-throughput insect surveillance. Gigascience 8, 1–22 (2019).

    Article  Google Scholar 

  • 76.

    Ovaskainen, O. & Abrego, N. Joint species distribution modelling joint species distribution modelling (Cambridge University Press, Cambridge, 2020). https://doi.org/10.1017/9781108591720.

    Google Scholar 


  • Source: Ecology - nature.com

    King Climate Action Initiative announces new research to test and scale climate solutions

    The potential risk of exposure to Borrelia garinii, Anaplasma phagocytophilum and Babesia microti in the Wolinski National Park (north-western Poland)