in

Response of altitudinal vegetation belts of the Tianshan Mountains in northwestern China to climate change during 1989–2015

  • 1.

    Sanchez-Gonzalez, A. & Lopez-Mata, L. Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico. Divers. Distrib. 11, 567–575 (2005).

    Article  Google Scholar 

  • 2.

    Dai, L., Feng, Y., Luo, G., Li, Y. & Xu, W. The relationship between soil, climate and forest development in the mid-mountain zone of the Sangong River watershed in the northern Tianshan Mountains, China. J. Arid Land 7, 63–72 (2014).

    Article  Google Scholar 

  • 3.

    Baiping, Z., Ya, T. & Senguo, M. O. Digital spectrum and analysis of altitudinal belts in the Tianshan Mountains. J. Mt. Res. 1, 18–28 (2004).

    Google Scholar 

  • 4.

    Pretzsch, H., Biber, P., Schutze, G., Uhl, E. & Rotzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Li, W. J. et al. Effects of climate change on potential habitats of the cold temperate coniferous forest in Yunnan province, southwestern China. J. Mt. Sci. Engl. 13, 1411–1422 (2016).

    Article  Google Scholar 

  • 6.

    Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. Addendum: More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 7, 154–158 (2017).

    ADS  Article  Google Scholar 

  • 7.

    Sun, J., Qin, X. J. & Yang, J. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau. Environ. Monit. Assess. 188, 20 (2016).

    Article  Google Scholar 

  • 8.

    Windmaisser, T. & Reisch, C. Long-term study of an alpine grassland: Local constancy in times of global change. Alpine Bot. 123, 1–6 (2013).

    Article  Google Scholar 

  • 9.

    Mahdavi, P., Akhani, H. & Van der Maarel, E. Species diversity and life-form patterns in steppe vegetation along a 3000 m altitudinal gradient in the Alborz Mountains, Iran. Folia Geobot. 48, 7–22 (2013).

    Article  Google Scholar 

  • 10.

    Rumpf, S. B. et al. Extinction debts and colonization credits of non-forest plants in the European Alps. Nat. Commun. 10, 4293 (2019).

    ADS  Article  Google Scholar 

  • 11.

    Lamprecht, A., Semenchuk, P. R., Steinbauer, K., Winkler, M. & Pauli, H. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytol. 220, 447–459 (2018).

    Article  Google Scholar 

  • 12.

    Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Kueppers, L. M. et al. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest. Glob. Change Biol. 23, 2383–2395 (2017).

    ADS  Article  Google Scholar 

  • 14.

    Sedmakova, D. et al. Growth-climate responses indicate shifts in the competitive ability of European beech and Norway spruce under recent climate warming in East-Central Europe. Dendrochronologia 54, 37–48 (2019).

    Article  Google Scholar 

  • 15.

    Fadrique, B. & Feeley, K. J. Commentary: Novel competitors shape species’ responses to climate change. Front. Ecol. Evol. 4, 33 (2016).

    Article  Google Scholar 

  • 16.

    Cavieres, L. A. et al. Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol. Lett. 17, 193–202 (2014).

    ADS  Article  Google Scholar 

  • 17.

    Li, B. F., Chen, Y. N., Chen, Z. S., Xiong, H. G. & Lian, L. S. Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010?. Atmos. Res. 167, 275–284 (2016).

    Article  Google Scholar 

  • 18.

    Peng, D. D. & Zhou, T. J. Why was the arid and semiarid northwest China getting wetter in the recent decades?. J. Geophys. Res. Atmos. 122, 9060–9075 (2017).

    ADS  Article  Google Scholar 

  • 19.

    Hong, C. P. et al. Impacts of climate change on future air quality and human health in China. Proc. Natl. Acad. Sci. U.S.A. 116, 17193–17200 (2019).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Xu, C. C., Chen, Y. N., Chen, Y. P., Zhao, R. F. & Ding, H. Responses of surface runoff to climate change and human activities in the arid region of Central Asia: A case study in the Tarim River Basin, China. Environ Manag. 51, 926–938 (2013).

    ADS  Article  Google Scholar 

  • 21.

    Deng, H. J., Chen, Y. N., Wang, H. J. & Zhang, S. H. Climate change with elevation and its potential impact on water resources in the Tianshan Mountains, Central Asia. Glob. Planet. Change 135, 28–37 (2015).

    ADS  Article  Google Scholar 

  • 22.

    Luo, M. et al. Identifying climate change impacts on water resources in Xinjiang, China. Sci. Total Environ. 676, 613–626 (2019).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Yue, X. Y., Liu, G., Chen, J. M. & Zhou, C. Y. Synergistic regulation of the interdecadal variability in summer precipitation over the Tianshan mountains by sea surface temperature anomalies in the high-latitude Northwest Atlantic Ocean and the Mediterranean Sea. Atmos. Res. 233, UNSP 104717 (2020).

    Article  Google Scholar 

  • 24.

    Zhang, H. K. K. & Roy, D. P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens. Environ. 197, 15–34 (2017).

    ADS  Article  Google Scholar 

  • 25.

    Hu, Z. Y., Dietz, A. & Kuenzer, C. The potential of retrieving snow line dynamics from Landsat during the end of the ablation seasons between 1982 and 2017 in European mountains. Int. J. Appl. Earth Obs. 78, 138–148 (2019).

    Article  Google Scholar 

  • 26.

    Geng, L. Y., Che, T., Wang, X. F. & Wang, H. B. Detecting spatiotemporal changes in vegetation with the BFAST model in the Qilian Mountain region during 2000–2017. Remote Sens. Basel 11, 103 (2019).

    ADS  Article  Google Scholar 

  • 27.

    Pham, H. T., Marshall, L., Johnson, F. & Sharma, A. A method for combining SRTM DEM and ASTER GDEM2 to improve topography estimation in regions without reference data. Remote Sens. Environ. 210, 229–241 (2018).

    ADS  Article  Google Scholar 

  • 28.

    Piloyan, A. & Milan, K. Semi-automated classification of landform elements in Armenia based on SRTM DEM using K-means unsupervised classification. Quaest. Geogr. 36, 93–103 (2017).

    Article  Google Scholar 

  • 29.

    Gonzalez-Moradas, M. D. R. & Viveen, W. Evaluation of ASTER GDEM2, SRTMv3.0, ALOS AW3D30 and TanDEM-X DEMs for the Peruvian Andes against highly accurate GNSS ground control points and geomorphological-hydrological metrics. Remote Sens. Environ. 237, 111509 (2020).

    ADS  Article  Google Scholar 

  • 30.

    Florinsky, I., Skrypitsyna, T. & Luschikova, O. Comparative accuracy of the AW3D30DSM, ASTER GDEM, and SRTM1 DEM: A case study on the Zaoksky testing ground, Central European Russia. Remote Sens. Lett. 9, 706–714 (2018).

    Article  Google Scholar 

  • 31.

    Xu, M., Kang, S. C., Wu, H. & Yuan, X. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmos. Res. 203, 141–163 (2018).

    Article  Google Scholar 

  • 32.

    Wu, P., Ding, Y. H., Liu, Y. J. & Li, X. C. The characteristics of moisture recycling and its impact on regional precipitation against the background of climate warming over Northwest China. Int. J. Climatol. 39, 5241–5255 (2019).

    Article  Google Scholar 

  • 33.

    Lutz, A. F., Immerzeel, W. W., Shrestha, A. B. & Bierkens, M. F. P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change. 4, 587–592 (2014).

    ADS  Article  Google Scholar 

  • 34.

    Chen, Y. N., Li, W. H., Deng, H. J., Fang, G. H. & Li, Z. Changes in Central Asia’s water tower: Past, present and future. Sci. Rep. 6, 35458 (2016).

    ADS  CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    DNA traces the origin of honey by identifying plants, bacteria and fungi

    SMART develops analytical tools to enable next-generation agriculture