in

The interplay of labile organic carbon, enzyme activities and microbial communities of two forest soils across seasons

  • 1.

    Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Siles, J. A., Cajthaml, T., Filipová, A., Minerbi, S. & Margesin, R. Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils. Soil Biol. Biochem. 112, 1–13 (2017).

    CAS  Article  Google Scholar 

  • 3.

    Sedjo, R. A. The carbon cycle and global forest ecosystem. Water Air Soil Pollut. 70, 295–307 (1993).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Flato, G. & Marotzke, J. Evaluation of climate models. In Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (2013).

  • 5.

    Zhao, W. et al. Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou Watershed on the loess plateau. CATENA 139, 191–198 (2016).

    CAS  Article  Google Scholar 

  • 6.

    Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2), 1–22 (2004).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Yang, Y. & Tilman, D. Soil and root carbon storage is key to climate benefits of bioenergy crops. Biofuel Res. J. 7(2), 1143–1148 (2020).

    Article  Google Scholar 

  • 8.

    Rovira, P. & Vallejo, V. R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach. Geoderma 107, 109–141 (2002).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Zou, X., Ruan, H., Fu, Y., Yang, X. & Sha, L. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation-incubation procedure. Soil Biol. Biochem. 37, 1923–1928 (2005).

    CAS  Article  Google Scholar 

  • 10.

    Liang, B. C. et al. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils. Biol. Fertil. Soils 26, 88–94 (1997).

    Article  Google Scholar 

  • 11.

    Xu, G. et al. Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two Abies faxoniana forest elevations under elevated temperatures. Soil Biol. Biochem. 91, 1–13 (2015).

    CAS  Article  Google Scholar 

  • 12.

    Wolters, V. Invertebrate control of soil organic matter stability. Biol. Fertil. Soils 31, 1–19 (2000).

    MathSciNet  CAS  Article  Google Scholar 

  • 13.

    Marschner, P., Kandelerb, E. & Marschnerc, B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35, 453–461 (2003).

    CAS  Article  Google Scholar 

  • 14.

    Xiao, Y., Huang, Z. & Lu, X. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China. Ecol. Eng. 82, 381–389 (2015).

    Article  Google Scholar 

  • 15.

    Burke, D. J., Weintraub, M. N., Hewins, C. R. & Kalisz, S. Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol. Biochem. 43, 795–803 (2011).

    CAS  Article  Google Scholar 

  • 16.

    Ljungdahl, L. G. & Eriksson, K. E. Ecology of microbial cellulose degradation. Adv. Microb. Ecol. 8, 237–299 (1985).

    CAS  Article  Google Scholar 

  • 17.

    Sinsabaugh, R. L., Hill, B. H. & Follstad-Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 468, 122–122 (2010).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Bowles, T. M., Acosta-Martínez, V., Calderón, F. & Jackson, L. E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem. 68, 252–262 (2014).

    CAS  Article  Google Scholar 

  • 19.

    Chen, X. et al. Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations. Appl. Soil Ecol. 107, 162–169 (2016).

    Article  Google Scholar 

  • 20.

    Qi, R. et al. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Appl. Soil Ecol. 102, 36–45 (2016).

    Article  Google Scholar 

  • 21.

    Rasche, F. et al. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME J 5, 389–402 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Piao, H., Hong, Y. & Yuan, Z. Seasonal changes of microbial biomass carbon related to climatic factors in soils from karst areas of southwest China. Biol. Fertil. Soils 30, 294–297 (2000).

    CAS  Article  Google Scholar 

  • 23.

    Zhou, G., Xu, J. & Jiang, P. Effect of management practices on seasonal dynamics of organic carbon in soils under bamboo plantations. Pedosphere 16, 525–531 (2006).

    CAS  Article  Google Scholar 

  • 24.

    Thomas, G. W. Soil pH and soil acidity. Soil Sci. Soc. Am. J. 5, 475–490 (1996).

    Google Scholar 

  • 25.

    Walkley, A. An examination of methods for determining organic carbon and nitrogen in soils (with one text-figure). Indian. J. Agric. Sci. 25, 598–609 (1935).

    CAS  Article  Google Scholar 

  • 26.

    Jenkinson, D. S. & Powlson, D. S. The effects of biocidal treatments on metabolism in soil: A method for measuring soil biomass. Soil Biol. Biochem. 8, 209–213 (1976).

    CAS  Article  Google Scholar 

  • 27.

    Blair, G. J., Lefroy, R. & Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 46, 393–406 (1995).

    Article  Google Scholar 

  • 28.

    Mcgill, W. B., Cannon, K. R., Robertson, J. A. & Cook, F. D. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can. J. Soil Sci. 66, 1–19 (1986).

    Article  Google Scholar 

  • 29.

    Marx, M. C., Wood, M. & Jarvis, S. C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640 (2001).

    CAS  Article  Google Scholar 

  • 30.

    Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16s rrna gene sequencing on the illumina miseq platform. Microbiome 2, 1–7 (2014).

    Article  Google Scholar 

  • 31.

    Mukherjee, P. K. et al. Oral mycobiome analysis of HIV-infected patients: Identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog 10, e1003996 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 32.

    Masella, A. P., Bartram, A. K., Truszkowski, J. M. & Brown, D. G. Neufeld JD (2012) PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. 13, 31 (2014).

    Article  CAS  Google Scholar 

  • 33.

    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Kemp, P. F. & Aller, J. Y. Bacterial diversity in aquatic and other environments: What 16S rDNA libraries can tell us. FEMS Microbiol. Ecol. 47, 161–177 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Cole, J. R. et al. Ribosomal Database Project, data and tools for high throughput rRNA analysis. Nucleic Acids. Res. 42, 633–642 (2014).

    Article  CAS  Google Scholar 

  • 36.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. App. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS  Article  Google Scholar 

  • 37.

    Haynes, R. J. Labile organic matter fractions as central components of the quality of agricultural soils: An pverview. Adv. Agron. 85, 221–268 (2005).

    CAS  Article  Google Scholar 

  • 38.

    Wang, J., Song, C., Wang, X. & Song, Y. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in northeast china. CATENA 96, 83–89 (2012).

    CAS  Article  Google Scholar 

  • 39.

    Ma, W., Li, G., Wu, J., Xu, G. & Wu, J. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau. Geoderma 377, 114565 (2020).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Smolander, A. & Kitunen, V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol. Biochem. 34, 651–660 (2002).

    CAS  Article  Google Scholar 

  • 41.

    Wang, Q. & Wang, S. Soil organic matter under different forest types in Southern China. Geoderma 142, 349–356 (2007).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B. & Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 165, 277–304 (2000).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Quideau, S. A. et al. Vegetation control on soil organic matter dynamics. Org. Geochem. 32, 247–252 (2001).

    CAS  Article  Google Scholar 

  • 44.

    Liu, C. et al. Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient. Plant Soil 376, 445–459 (2014).

    CAS  Article  Google Scholar 

  • 45.

    Jiang, P., Xu, Q., Xu, Z. & Cao, Z. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China. Forest Ecol. Manag. 236, 30–36 (2006).

    Article  Google Scholar 

  • 46.

    Hu, Y. et al. Climate change affects soil labile organic carbon fractions in a Tibetan alpine meadow. J. Soil Sediment 17, 326–339 (2016).

    Article  CAS  Google Scholar 

  • 47.

    Liu, G. et al. Seasonal changes in labile organic matter as a function of environmental factors in a relict permafrost region on the Qinghai-Tibetan Plateau. CATENA 180, 194–202 (2019).

    CAS  Article  Google Scholar 

  • 48.

    Mcdowell, W. H., Currie, W. S., Aber, J. D. & Yano, Y. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. Water Air Soil Pollut. 105, 175–182 (1998).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Kurka, A. M., Starr, M., Heikinheimo, M. & Salkinojasalonen, M. Decomposition of cellulose strips in relation to climate, litterfall nitrogen, phosphorus and C/N ratio in natural boreal forests. Plant Soil 219, 91–101 (2000).

    CAS  Article  Google Scholar 

  • 50.

    Waldrop, M. P. & Firestone, M. K. Response of microbial community composition and function to soil climate change. Microb. Ecol. 52, 716–724 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Uselman, S. M., Qualls, R. G. & Thomas, R. B. Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree. Plant Soil 222, 191–202 (2000).

    CAS  Article  Google Scholar 

  • 52.

    Ziegler, S. E., Billings, S. A., Lane, C. S., Li, J. & Fogel, M. L. Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biol. Biochem. 60, 23–32 (2013).

    CAS  Article  Google Scholar 

  • 53.

    Mondal, I. K. et al. Seasonal variation of soil enzymes in areas of fluoride stress in Birbhum District, West Bengal, India. J. Taibah. Univ. Sci. 9, 133–142 (2015).

    Article  Google Scholar 

  • 54.

    Wang, C., Lü, Y., Wang, L., Liu, X. & Tian, X. Insights into seasonal variation of litter decomposition and related soil degradative enzyme activities in subtropical forest in China. J. Forest Res. 24, 683–689 (2013).

    CAS  Article  Google Scholar 

  • 55.

    Baldrian, P., Merhautová, V., Petránková, M., Cajthaml, T. & Šnajdr, J. Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Appl. Soil Ecol. 46, 177–182 (2010).

    Article  Google Scholar 

  • 56.

    Song, Y. et al. Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang Plain in northeast China. Environ. Manag. 50, 418–426 (2012).

    ADS  Article  Google Scholar 

  • 57.

    Shi, W., Dell, E., Bowman, D. & Iyyemperumal, K. Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant Soil 288, 285–296 (2006).

    CAS  Article  Google Scholar 

  • 58.

    Salazar, S. et al. Correlation among soil enzyme activities under different forest system management practices. Ecol. Eng. 37, 1123–1131 (2011).

    Article  Google Scholar 

  • 59.

    Waldrop, M. P. & Zak, D. R. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9, 921–933 (2006).

    CAS  Article  Google Scholar 

  • 60.

    Stursova, M., Zifcakova, L., Leigh, M. B., Burgess, R. & Baldrian, P. Cellulose utilization in forest litter and soil: Identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol. 80, 735–746 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Pankratov, T. A., Ivanova, A. O., Dedysh, S. N. & Liesack, W. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ. Microbiol. 13, 1800–1814 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 62.

    Eichorst, S. A., Kuske, C. R. & Schmidt, T. M. Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Appl. Environ. Microbiol. 77, 586–596 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 63.

    Ward, N. L., Challacombe, J. F., Janssen, P. H., Henrissat, B. & Coutinho, P. M. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. App. Environ. Microbiol. 75, 2046–2056 (2009).

    CAS  Article  Google Scholar 

  • 64.

    Bastida, F., Hernández, T., Albaladejo, J. & García, C. Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate. Soil Biol. Biochem. 65, 12–21 (2013).

    CAS  Article  Google Scholar 

  • 65.

    Hannula, S. E., Boschker, H. T. S., Boer, W. D. & Veen, J. A. V. 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline. New Phytol. 194, 784–799 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Edwards, I. P., Zak, D. R., Kellner, H., Eisenlord, S. D. & Pregitzer, K. S. Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest. PLoS ONE 6, e20421 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Fontaine, S., Mariotti, A. & Abbadie, L. The priming effect of organic matter: A question of microbial competition?. Soil Biol. Biochem. 35, 837–843 (2003).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    SMART develops analytical tools to enable next-generation agriculture

    MIT Solve announces 2021 global challenges