Tsukamoto, K. Discovery of the spawning area for Japanese eel. Nature 356, 789–791 (1992).
Tsukamoto, K. Spawning of eels near a seamount. Nature 439, 929 (2006).
Chow, S. et al. Discovery of mature freshwater eels in the open ocean. Fish. Sci. 75, 257–259 (2009).
Kurogi, H. et al. First capture of post-spawning female of the Japanese eel Anguilla japonica at the southern West Mariana Ridge. Fish. Sci. 77, 199–205 (2011).
Tsukamoto, K. et al. Positive buoyancy in eel leptocephali: an adaptation for life in the ocean surface layer. Mar. Biol. 156, 835–846 (2009).
Cheng, P. W. & Tzeng, W. N. Timing of metamorphosis and estuarine arrival across the dispersal range of the Japanese eel Anguilla japonica. Mar. Ecol. Prog. Ser. 131, 87–96 (1996).
Chen, J. Z., Huang, S. L. & Han, Y. S. Impact of long-term habitat loss on the Japanese eel Anguilla japonica. Estuar. Coast. Shelf Sci. 151, 361–369 (2014).
Tanaka, E. Stock assessment of Japanese eels using Japanese abundance indices. Fish. Sci. 80, 1129–1144 (2014).
Jacoby, D. & Gollock, M. Anguilla anguilla. The IUCN red list of threatened species, version 2014.2. IUCN 2014 e.T60344A45833138. https://doi.org/10.1108/ICS-04-2017-0025 (2014).
Onda, H. et al. Vertical distribution and assemblage structure of leptocephali in the North Equatorial Current region of the western Pacific. Mar. Ecol. Prog. Ser. 575, 119–136 (2017).
Saijo, Y., Iizuka, S. & Asaoka, O. Chlorophyll maxima in Kuroshio and adjacent area. Mar. Biol. 4, 190–196 (1969).
Furuya, K. Subsurface chlorophyll maximum in the tropical and subtropical western Pacific Ocean: Vertical profiles of phytoplankton biomass and its relationship with chlorophylla and particulate organic carbon. Mar. Biol. 107, 529–539 (1990).
Otake, T., Nogami, K. & Maruyama, K. Dissolved and particulate organic matter as possible food sources for eel leptocephali. Mar. Ecol. Prog. Ser. 92, 27–34 (1993).
Mochioka, N. & Iwamizu, M. Diet of anguilloid larvae: Leptocephali feed selectively on larvacean houses and fecal pellets. Mar. Biol. 125, 447–452 (1996).
Miller, M. J., Otake, T. & Aoyama, J. Observations of gut contents of leptocephali in the North Equatorial current and Tomini Bay Indonesia. Coast. Mar. Sci. 35, 277–288 (2012).
Tomoda, T. et al. Observations of gut contents of anguilliform leptocephali collected in the western North Pacific. Nippon Suisan Gakkaishi 84, 32–44 (2018).
Deibel, D., Parrish, C. C., Grønkjær, P., Munk, P. & GisselNielsen, T. Lipid class and fatty acid content of the leptocephalus larva of tropical eels. Lipids 47, 623–634 (2012).
Liénart, C. et al. Geographic variation in stable isotopic and fatty acid composition of anguilliform leptocephali and particulate organic matter in the South Pacific. Mar. Ecol. Prog. Ser. 544, 225–241 (2016).
Miller, M. J. et al. A low trophic position of Japanese eel larvae indicates feeding on marine snow. Biol. Lett. 9, 20120826 (2013).
Miyazaki, S. et al. Stable isotope analysis of two species of anguilliform leptocephali (Anguilla japonica and Ariosoma major) relative to their feeding depth in the North Equatorial Current region. Mar. Biol. 158, 2555–2564 (2011).
Chow, S. et al. Japanese eel Anguilla japonica do not assimilate nutrition during the oceanic spawning migration: evidence from stable isotope analysis. Mar. Ecol. Prog. Ser. 402, 233–238 (2010).
Chow, S. et al. Onboard rearing attempts for the Japanese eel leptocephali using POM-enriched water collected in the Western North Pacific. Aquat. Living Resour. 30, 1–7 (2017).
Miller, M. J., Hanel, R., Feunteun, E. & Tsukamoto, K. The food source of Sargasso Sea leptocephali. Mar. Biol. 167, 57 (2020).
Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).
Wang, M. & Jeffs, A. G. Nutritional composition of potential zooplankton prey of spiny lobster larvae: a review. Rev. Aquac. 6, 270–299 (2014).
Ho, T. W., Hwang, J. S., Cheung, M. K., Kwan, H. S. & Wong, C. K. Dietary analysis on the shallow-water hydrothermal vent crab Xenograpsus testudinatus using Illumina sequencing. Mar. Biol. 162, 1787–1798 (2015).
Chow, S. et al. Molecular diet analysis of Anguilliformes leptocephalus larvae collected in the western North Pacific. PLoS ONE 14, e0225610 (2019).
Riemann, L. et al. Qualitative assessment of the diet of European eel larvae in the Sargasso Sea resolved by DNA barcoding. Biol. Lett. 6, 819–822 (2010).
Ayala, D. J. et al. Gelatinous plankton is important in the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea. Sci. Rep. 8, 6156 (2018).
Estrada, M. et al. Phytoplankton across tropical and subtropical regions of the Atlantic Indian and Pacific Oceans. PLoS ONE 11, e0151699 (2016).
Lundgreen, R. B. C. et al. Eukaryotic and cyanobacterial communities associated with marine snow particles in the oligotrophic Sargasso Sea. Sci. Rep. 9, 1–12 (2019).
Ayala, D., Riemann, L. & Munk, P. Species composition and diversity of fish larvae in the Subtropical Convergence Zone of the Sargasso Sea from morphology and DNA barcoding. Fish. Oceanogr. 25, 85–104 (2016).
Arai, M. N. Active and passive factors affecting aggregations of hydromedusae: a review. Sci. Mar. 56, 99–108 (1992).
Boero, F. et al. Gelatinous plankton: Irregularities rule the world (sometimes). Mar. Ecol. Prog. Ser. 356, 299–310 (2008).
Purcell, J. E. Feeding and growth of the siphonophore Muggiaea atlantica (Cunningham 1893). J. Exp. Mar. Bio. Ecol. 62, 39–54 (1982).
Alldredge, A. Particle aggregation dynamics. In Encyclopedia of Ocean Sciences, 2nd edn, 330–337 (Elsevier Inc., 2008). https://doi.org/10.1016/B978-012374473-9.00468-9
Hosia, A. & Bamstedt, U. Seasonal abundance and vertical distribution of siphonophores in western Norwegian fjords. J. Plankton Res. 30, 951–962 (2008).
Lo, W. T., Yu, S. F. & Hsieh, H. Y. Effects of summer mesoscale hydrographic features on epipelagic siphonophore assemblages in the surrounding waters of Taiwan, western North Pacific Ocean. J. Oceanogr. 69, 495–509 (2013).
Lo, W.-T., Yu, S.-F. & Hsieh, H.-Y. Hydrographic processes driven by seasonal monsoon system affect siphonophore assemblages in tropical-subtropical waters (Western North Pacific Ocean). PLoS ONE 9, e100085 (2014).
Li, K. Z., Yin, J. Q., Huang, L. M. & Song, X. Y. Comparison of siphonophore distributions during the southwest and northeast monsoons on the northwest continental shelf of the South China Sea. J. Plankton Res. 34, 636–641 (2012).
López-López, L., Molinero, J. C., Tseng, L.-C., Chen, Q.-C. & Hwang, J.-S. Seasonal variability of the gelatinous carnivore zooplankton community in Northern Taiwan. J. Plankton Res. 35, 677–683 (2013).
Price, J. F. Upper ocean response to a hurricane. J. Phys. Ocean. 11, 153–175 (1981).
Toratani, M. Primary production enhancement by typhoon Ketsana in 2003 in western North Pacific. In Remote Sensing of Inland, Coastal, and Oceanic Waters (eds. Frouin, R. J. et al.) 7150, 715013 (SPIE, 2008).
Lin, I. I. Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. J. Geophys. Res. Ocean. 117, C03039 (2012).
Ishida, H., Furusawa, K., Makino, T., Ishizaka, J. & Watanabe, Y. The effect of typhoons on phytoplankton communities and settling particle flux in the western North Pacific subtropical region. Oceanogr. Jpn. 25, 17–41 (2016).
Siswanto, E., Ishizaka, J., Yokouchi, K., Tanaka, K. & Tan, C. K. Estimation of interannual and interdecadal variations of typhoon-induced primary production: a case study for the outer shelf of the East China Sea. Geophys. Res. Lett. 34, L03604 (2007).
Chen, Y. L. L., Houng-Yung, C., Jan, S. & Tuo, S. H. Phytoplankton productivity enhancement and assemblage change in the upstream Kuroshio after typhoons. Mar. Ecol. Prog. Ser. 385, 111–126 (2009).
Tsuchiya, K. et al. Typhoon-induced response of phytoplankton and bacteria in temperate coastal waters. Estuar. Coast. Shelf Sci. 167, 458–465 (2015).
Typhoon information. Japan Meteorological Agency. https://www.data.jma.go.jp/fcd/yoho/typhoon/index.html. Accessed 10 Dec 2020.
Miller, M. J. et al. Morphology and gut contents of anguillid and marine eel larvae in the Sargasso Sea. Zool. Anz. 279, 138–151 (2019).
Singh, P., Liu, Y., Li, L. & Wang, G. Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats. Appl. Microbiol. Biotechnol. 98, 5789–5805 (2014).
Tanaka, H., Kagawa, H., Ohta, H., Unuma, T. & Nomura, K. The first production of glass eel in captivity: fish reproductive physiology facilitates great progress in aquaculture. Fish Physiol. Biochem. 28, 493–497 (2003).
Stenly, W. et al. Ingestion by Japanese eel Anguilla japonica larvae on various minute zooplanktons. Aquac. Sci. 61, 341–347 (2013).
Butts, I. A. E., Sørensen, S. R., Politis, S. N. & Tomkiewicz, J. First-feeding by European eel larvae: a step towards closing the life cycle in captivity. Aquaculture 464, 451–458 (2016).
Tsukamoto, K. & Miller, M. J. The mysterious feeding ecology of leptocephali: a unique strategy of consuming marine snow materials. Fish. Sci. 87, 11–29 (2020).
Bouilliart, M., Tomkiewicz, J., Lauesen, P., De Kegel, B. & Adriaens, D. Musculoskeletal anatomy and feeding performance of pre-feeding engyodontic larvae of the European eel (Anguilla anguilla). J. Anat. 227, 325–340 (2015).
Westeberg, H. A proposal regarding the source of nutrition of leptocephalus larvae. Int. Rev. Hydrobiol. Hydrogr. 75, 863–864 (1990).
Miller, M. Ecology of anguilliform leptocephali: remarkable transparent fish larvae of the ocean surface layer. Aqua-BioScience Monogr. https://doi.org/10.1093/gbe/evy021 (2009).
Strom, S., Bright, K., Fredrickson, K. & Brahamsha, B. The Synechococcus cell surface protein SwmA increases vulnerability to predation by flagellates and ciliates. Limnol. Oceanogr. 62, 784–794 (2017).
Benner, R. & Kaiser, K. Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnol. Oceanogr. 48, 118–128 (2003).
Seymour, J., Ahmed, T., Durham, W. & Stocker, R. Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat. Microb. Ecol. 59, 161–168 (2010).
Biller, S. J. et al. Bacterial vesicles in marine ecosystems. Science (80-) 343, 183–186 (2014).
Scanlan, D. Bacterial vesicles in the ocean. Science 343, 143–144 (2014).
Cisternas-Novoa, C., Lee, C. & Engel, A. Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP): Differences between their origin and vertical distributions in the ocean. Mar. Chem. 175, 56–71 (2015).
Long, R. A. & Azam, F. Abundant protein-containing particles in the sea. Aquat. Microb. Ecol. 10, 213–221 (1996).
Tanoue, E., Ishii, M. & Midorikawa, T. Discrete dissolved and particulate proteins in oceanic waters. Limnol. Oceanogr. 41, 1334–1343 (1996).
Simon, M., Alldredge, A. L. & Azam, F. Bacterial carbon dynamics on marine snow. Mar. Ecol. Prog. Ser. 65, 205–211 (1990).
Godhe, A. et al. Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Appl. Environ. Microbiol. 74, 7174–7182 (2008).
Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52, 79–92 (2005).
Gong, W. & Marchetti, A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front. Mar. Sci. 6, 219 (2019).
Furuya, K. & Marumo, R. The structure of the phytoplankton community in the subsurface chlorophyll maxima in the western North Pacific Ocean. J. Plankton Res. 5, 393–406 (1983).
Kuroki, M., Okamura, A., Yamada, Y., Hayasaka, S. & Tsukamoto, K. Evaluation of optimum temperature for the early larval growth of Japanese eel in captivity. Fish. Sci. 85, 801–809 (2019).
Okamura, A. et al. Effects of water temperature on early development of Japanese eel Anguilla japonica. Fish. Sci. 73, 1241–1248 (2007).
Kurokawa, T. et al. Influence of water temperature on morphological deformities in cultured larvae of Japanese eel, Anguilla japonica, at completion of yolk resorption. J. World Aquac. Soc. 39, 726–735 (2008).
Tsukamoto, K. et al. Oceanic spawning ecology of freshwater eels in the western North Pacific. Nat. Commun. 2, 179 (2011).
Shirai, K. et al. Temperature and depth distribution of Japanese eel eggs estimated using otolith oxygen stable isotopes. Geochim. Cosmochim. Acta 236, 373–383 (2018).
Ichikawa, T. Particulate organic carbon and nitrogen in the adjacent seas of the Pacific Ocean. Mar. Biol. 68, 49–60 (1982).
Hebel, D. V. & Karl, D. M. Seasonal, interannual and decadal variations in particulate matter concentrations and composition in the subtropical North Pacific Ocean. Deep Sea Res Part II Top. Stud. Oceanogr. 48, 1669–1695 (2001).
MacIntyre, S., Alldredge, A. L. & Gotschalk, C. C. Accumulation of marines now at density discontinuities in the water column. Limnol. Oceanogr. 40, 449–468 (1995).
Tomas, C. R. & Hasle, G. R. Identifying Marine Phytoplankton (Academic Press, New York, 1997).
Suzuki, K. et al. Responses of phytoplankton and heterotrophic bacteria in the northwest subarctic Pacific to in situ iron fertilization as estimated by HPLC pigment analysis and flow cytometry. Prog. Oceanogr. 64, 167–187 (2005).
Nagai, S. et al. Influences of diurnal sampling bias on fixed-point monitoring of plankton biodiversity determined using a massively parallel sequencing-based technique. Gene 576, 667–675 (2016).
Tanabe, A. S. et al. Comparative study of the validity of three regions of the 18S-rRNA gene for massively parallel sequencing-based monitoring of the planktonic eukaryote community. Mol. Ecol. Resour. 16, 402–414 (2016).
Dzhembekova, N., Moncheva, S., Ivanova, P., Slabakova, N. & Nagai, S. Biodiversity of phytoplankton cyst assemblages in surface sediments of the Black Sea based on metabarcoding. Biotechnol. Biotechnol. Equip. 32, 1507–1513 (2018).
Dzhembekova, N., Urusizaki, S., Moncheva, S., Ivanova, P. & Nagai, S. Applicability of massively parallel sequencing on monitoring harmful algae at Varna Bay in the Black Sea. Harmful Algae 68, 40–51 (2017).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Schloss, P. D., Gevers, D. & Westcott, S. L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6, e27310 (2011).
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
Cheung, K. L. Y., Huen, J., Houry, W. A. & Ortega, J. Comparison of the multiple oligomeric structures observed for the Rvb1 and Rvb2 proteins. Biochem. Cell Biol. 88, 77–88 (2010).
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).
Horton, T. et al. World register of marine species (WoRMS) (2018).
R Core team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing , Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/ (2017). https://doi.org/10.2788/95827.
Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 26, 32–46 (2001).
Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-2. CRAN R (2018). ISBN 0-387-95457-0.
Source: Ecology - nature.com