in

Habitat generalist species constrain the diversity of mimicry rings in heterogeneous habitats

  • 1.

    Elias, M., Gompert, Z., Jiggins, C. & Willmott, K. Mutualistic interactions drive ecological niche convergence in a diverse butterfly community. PLoS Biol. 6, e300 (2008).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 2.

    Newman, E., Manning, J. & Anderson, B. Local adaptation: Mechanical fit between floral ecotypes of Nerine humilis (Amaryllidaceae) and pollinator communities. Evolution 69, 2262–2275 (2015).

    PubMed  Article  Google Scholar 

  • 3.

    Anderson, B., Ros, P., Wiese, T. J. & Ellis, A. G. Intraspecific divergence and convergence of floral tube length in specialized pollination interactions. Proc. R. Soc. B 281, 20141420 (2014).

    PubMed  Article  Google Scholar 

  • 4.

    Jordano, P. Angiosperm fleshy fruits and seed dispersers: A comparative analysis of adaptation and constraints in plant-animal interactions. Am. Nat. 145, 163–191 (1995).

    Article  Google Scholar 

  • 5.

    Müller, F. Ituna and Thyridia: a remarkable case of mimicry in butterflies. Trans. Entomol. Soc. Lond. 1879, 20–29 (1879).

    Google Scholar 

  • 6.

    Guimarães, P. R. Jr., Jordano, P. & Thompson, J. N. Evolution and coevolution in mutualistic networks. Ecol. Lett. 14, 877–885 (2011).

    PubMed  Article  Google Scholar 

  • 7.

    Pinheiro, C. E. G, Freitas, A. V. L., Campos, V. C., DeVries, P. J. & Penz, C. M. Both palatable and unpalatable butterflies use bright colors to signal difficulty of capture to predators. Neotrop. Entomol. 45, 107–113 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Kapan, D. D. Three-butterfly system provides a field test of müllerian mimicry. Nature 409, 338–340 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 9.

    Meyer, A. Repeating patterns of mimicry. PLoS Biol. 4, e341 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 10.

    Rowland, H. M., Ihalainen, E., Lindström, L., Mappes, J. & Speed, M. P. Co-mimics have a mutualistic relationship despite unequal defences. Nature 448, 64–67 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 11.

    Joron, M. & Mallet, J. L. B. Diversity in mimicry: Paradox or paradigm?. Trends Ecol. Evol. 13, 461–466 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Mallet, J. Causes and consequences of a lack of coevolution in müllerian mimicry. Evol. Ecol. 13, 777–806 (1999).

    Article  Google Scholar 

  • 13.

    Kozak, K. M. et al. Multilocus species trees show the recent adaptive radiation of the mimetic Heliconius butterflies. Syst. Biol. 64, 505–524 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Joshi, J., Prakash, A. & Kunte, K. Evolutionary assembly of communities in butterfly mimicry rings. Am. Nat. 189, E58–E76 (2017).

    PubMed  Article  Google Scholar 

  • 15.

    Dumbacher, J. P. & Fleischer, R. C. Phylogenetic evidence for colour pattern convergence in toxic pitohuis: Müllerian mimicry in birds?. Proc. R. Soc. B 268, 1971–1976 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Plowright, R. C. & Owen, R. E. The evolutionary significance of bumble bee color patterns: A mimetic interpretation. Evolution 34, 622–637 (1980).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Williams, P. The distribution of bumblebee colour patterns worldwide: possible significance for thermoregulation, crypsis, and warning mimicry. Biol. J. Linn. Soc. 92, 97–118 (2007).

    Article  Google Scholar 

  • 18.

    Langham, G. M. Specialized avian predators repeatedly attack novel color morphs of Heliconius butterflies. Evolution 58, 2783–2787 (2004).

    PubMed  Article  Google Scholar 

  • 19.

    Randall, J. E. A review of mimicry in marine fishes. Zool. Stud. 44, 299–328 (2005).

    Google Scholar 

  • 20.

    Symula, R., Schulte, R. & Summers, K. Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. Proc. R. Soc. B 268, 2415–2421 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Stuckert, A. M. M., Venegas, P. J. & Summers, K. Experimental evidence for predator learning and Müllerian mimicry in Peruvian poison frogs (Ranitomeya, Dendrobatidae). Evol. Ecol. 28, 413–426 (2014).

    Article  Google Scholar 

  • 22.

    Lev-Yadun, S. Müllerian mimicry in aposematic spiny plants. Plandt Signal Behav. 4, 482–483 (2009).

    Article  Google Scholar 

  • 23.

    Benson, W. W. Natural selection for Miillerian Mimicry in Heliconius erato in Costa Rica. Science 176, 936–939 (1972).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 24.

    Pinheiro, C. E. G. Does Müllerian mimicry work in nature? Experiments with Butterflies and Birds (Tyrannidae). Biotropica 35, 356–364 (2003).

    Google Scholar 

  • 25.

    Beccaloni, G. W. Vertical stratification of ithomiine butterfly (Nymphalidae: Ithomiinae) mimicry complexes: The relationship between adult flight height and larval host-plant height. Biol. J. Linn. Soc. 62, 313–341 (1997).

    Google Scholar 

  • 26.

    Marek, P. E. & Bond, J. E. A Müllerian mimicry ring in Appalachian millipedes. PNAS 106, 9755–9760 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 27.

    Mallet, J. & Gilbert, L. E. Why are there so many mimicry rings? Correlations between habitat, behaviour and mimicry in Heliconius butterflies. Biol. J. Linn. Soc. 55, 159–180 (1995).

    Google Scholar 

  • 28.

    Joron, M. & Iwasa, Y. The evolution of a Müllerian mimic in a spatially distributed community. J. Theor. Biol. 237, 87–103 (2005).

    PubMed  MATH  Article  Google Scholar 

  • 29.

    Gompert, Z., Willmott, K. & Elias, M. Heterogeneity in predator micro-habitat use and the maintenance of Müllerian mimetic diversity. J. Theor. Biol. 281, 39–46 (2011).

    PubMed  Article  Google Scholar 

  • 30.

    Aubier, T. G. & Elias, M. Positive and negative interactions jointly determine the structure of Müllerian mimetic communities. Oikos https://doi.org/10.1111/oik.06789 (2020).

    Article  Google Scholar 

  • 31.

    Endler, J. A. A Predator’s View of Animal Color Patterns. In Evolutionary Biology (eds Hecht, M. K. et al.) 319–364 (Springer, Boston, 1978).

    Google Scholar 

  • 32.

    Gamberale-Stille, G. Benefit by contrast: an experiment with live aposematic prey. Behav. Ecol. 12, 768–772 (2001).

    Article  Google Scholar 

  • 33.

    Cazetta, E., Schaefer, H. M. & Galetti, M. Why are fruits colorful? The relative importance of achromatic and chromatic contrasts for detection by birds. Evol. Ecol. 12, 233–244 (2009).

    Article  Google Scholar 

  • 34.

    Brakefield, P. M. Polymorphic Müllerian mimicry and interactions with thermal melanism in ladybirds and a soldier beetle: a hypothesis. Biol. J. Linn. Soc. 26, 243–267 (1985).

    Article  Google Scholar 

  • 35.

    Lindstedt, C., Lindström, L. & Mappes, J. Thermoregulation constrains effective warning signal expression. Evolution 63, 469–478 (2009).

    PubMed  Article  Google Scholar 

  • 36.

    Dalrymple, R. L. et al. Abiotic and biotic predictors of macroecological patterns in bird and butterfly coloration. Ecol. Monogr. 88, 204–224 (2018).

    Article  Google Scholar 

  • 37.

    Papageorgis, C. Mimicry in neotropical butterflies. Am. Sci. 63, 522–532 (1975).

    ADS  Google Scholar 

  • 38.

    DeVries, P. J., Lande, R. & Murray, D. Associations of co-mimetic ithomiine butterflies on small spatial and temporal scales in a neotropical rainforest. Biol. J. Linn. Soc. 67, 73–85 (1999).

    Article  Google Scholar 

  • 39.

    Willmott, K. R. & Mallet, J. Correlations between adult mimicry and larval host plants in ithomiine butterflies. Proc. R. Soc. B 271, S266–S269 (2004).

    PubMed  Article  Google Scholar 

  • 40.

    Andreazzi, C. S., Thompson, J. N. & Guimarães, P. R. Network structure and selection asymmetry drive coevolution in species-rich antagonistic interactions. Am. Nat. 190, 99–115 (2017).

    PubMed  Article  Google Scholar 

  • 41.

    Medeiros, L. P., Garcia, G., Thompson, J. N. & Guimarães, P. R. The geographic mosaic of coevolution in mutualistic networks. PNAS 115, 12017–12022 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Lewis, J. J., Belleghem, S. M. V., Papa, R., Danko, C. G. & Reed, R. D. Many functionally connected loci foster adaptive diversification along a neotropical hybrid zone. Sci. Adv. 6, eabb8617 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Willmott, K. R., Robinson Willmott, J. C., Elias, M. & Jiggins, C. D. Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proc. Royal Soc. B 284, 20170744 (2017).

    Article  Google Scholar 

  • 44.

    Chouteau, M. & Angers, B. The role of predators in maintaining the geographic organization of aposematic signals. Am. Nat. 178, 810–817 (2011).

    PubMed  Article  Google Scholar 

  • 45.

    Abrams, P. A. The evolution of predator-prey interactions: Theory and evidence. Annu. Rev. Ecol. Evol. Syst. 31, 79–105 (2000).

    Article  Google Scholar 

  • 46.

    Pinheiro, C. E. G. & Cintra, R. Butterfly predators in the neotropics: Which birds are involved?. J. Lepid. Soc. 71, 109–114 (2017).

    Google Scholar 

  • 47.

    Beatty, C. D., Beirinckx, K. & Sherratt, T. N. The evolution of müllerian mimicry in multispecies communities. Nature 431, 63–66 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 48.

    Ramos, R. R. & Freitas, A. V. L. Population biology and wing color variation in Heliconius erato phyllis (Nymphalidae). J. Lepid. Soc. 53, 11–21 (1999).

    Google Scholar 

  • 49.

    Seixas, R. R., Santos, S. E., Okada, Y. & Freitas, A. V. L. Population Biology of the Sand Forest Specialist Butterfly Heliconius hermathena hermathena (Hewitson) (Nymphalidae: Heliconiinae) in Central Amazonia). J. Lepid. Soc. 71, 133–140 (2017).

    Google Scholar 

  • 50.

    Turner, J. R. G. The evolutionary dynamics of batesian and muellerian mimicry: Similarities and differences. Ecol. Entomol. 12, 81–95 (1987).

    Article  Google Scholar 

  • 51.

    R Core Team. A Language and Environment for Statistical Computing 2016 (R Foundation for Statistical Computing, Vienna, 2016).

    Google Scholar 

  • 52.

    Sheppard, P. M. et al. Genetics and the evolution of muellerian mimicry in heliconius butterflies. Philos. Trans. R. Soc. Lond. B 308, 433–610 (1985).

    ADS  Article  Google Scholar 

  • 53.

    Beccaloni, G. W. Ecology, natural history and behaviour of Ithomiine butterflies and their mimics in Ecuador (Lepidoptera: Nymphalidae: Ithomiinae). Trop. Lepid. Res. 8, 103–124 (1997).

    Google Scholar 

  • 54.

    Uehara-Prado, M. & Freitas, A. V. L. The effect of rainforest fragmentation on species diversity and mimicry ring composition of ithomiine butterflies. Insect Conserv. Divers. 2, 23–28 (2009).

    Article  Google Scholar 

  • 55.

    Brown, K. S. & Benson, W. W. Adaptive polymorphism associated with multiple müllerian mimicry in Heliconius numata (Lepid. Nymph.). Biotropica 6, 205–228 (1974).

    Article  Google Scholar 

  • 56.

    Jay, P. et al. Supergene evolution triggered by the introgression of a chromosomal inversion. Curr. Biol. 28, 1839-1845.e3 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Holmes, I. A., Grundler, M. R. & Davis Rabosky, A. R. Predator perspective drives geographic variation in frequency-dependent polymorphism. Am. Nat. 190, E78–E93 (2017).

    PubMed  Article  Google Scholar 

  • 58.

    Thompson, J. N. The Coevolutionary Process (University of Chicago Press, Chicago, 1994).

    Google Scholar 

  • 59.

    Bronstein, J. L. Mutualism (Oxford University Press, Oxford, 2015).

    Google Scholar 

  • 60.

    Brown, K. S. Mimicry, aposematism and crypsis in enotropical Lepidoptera: the importance of dual signals. Bull. Soc. Zool. Fr. 113, 83–101 (1988).

    Google Scholar 

  • 61.

    Chazot, N. et al. Mutualistic mimicry and filtering by altitude shape the structure of Andean butterfly communities. Am. Nat. 183, 26–39 (2014).

    PubMed  Article  Google Scholar 

  • 62.

    Rossato, D. O., Kaminski, L. A., Iserhard, C. A. & Duarte, L. Chapter two-more than colours: An eco-evolutionary framework for wing shape diversity in butterflies. In Advances in Insect Physiology (ed. Ffrench-Constant, R. H.) (Academic Press, Cambridge, 2018).

    Google Scholar 

  • 63.

    Kingsolver, J. G. Thermoregulation, flight, and the evolution of wing pattern in pierid butterflies: The topography of adaptive landscapes. Integr. Comp. Biol. 28, 899–912 (1988).

    Google Scholar 

  • 64.

    Finkbeiner, S. D., Briscoe, A. D. & Reed, R. D. Warning signals are seductive: Relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies. Evolution 68, 3410–3420 (2014).

    PubMed  Article  Google Scholar 

  • 65.

    Bergstrom, C. T. & Lachmann, M. The Red King effect: When the slowest runner wins the coevolutionary race. PNAS 100, 593–598 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 66.

    Adler, L. S. & Bronstein, J. L. Attracting antagonists: Does floral nectar increase leaf herbivory?. Ecology 85, 1519–1526 (2004).

    Article  Google Scholar 

  • 67.

    Siepielski, A. M. & Benkman, C. W. Conflicting selection from an antagonist and a mutualist enhances phenotypic variation in a plant. Evolution 64, 1120–1128 (2010).

    PubMed  Article  Google Scholar 

  • 68.

    Guimarães, P. R., Pires, M. M., Jordano, P., Bascompte, J. & Thompson, J. N. Indirect effects drive coevolution in mutualistic networks. Nature 550, 511–514 (2017).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 69.

    Raimundo, R. L. G., Gibert, J. P., Hembry, D. H. & Guimarães, P. R. Conflicting selection in the course of adaptive diversification: The interplay between mutualism and intraspecific competition. Am. Nat. 183, 363–375 (2014).

    PubMed  Article  Google Scholar 

  • 70.

    Benkman, C. W. Biotic interaction strength and the intensity of selection. Ecol. Lett. 16, 1054–1060 (2013).

    PubMed  Article  Google Scholar 

  • 71.

    Guimarães, P. R. The Structure of Ecological Networks Across Levels of Organization. Annu. Rev. Ecol. Evol. Syst. 51(1), 433–460 (2020).

    MathSciNet  Article  Google Scholar 

  • 72.

    Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    ADS  CAS  PubMed  MATH  Article  Google Scholar 

  • 73.

    Gibert, J. P., Pires, M. M., Thompson, J. N. & Guimarães, P. R. The spatial structure of antagonistic species affects coevolution in predictable ways. Am. Nat. 182, 578–591 (2013).

    PubMed  Article  Google Scholar 

  • 74.

    Brown, K. S. The biology of Heliconius and related genera. Annu. Rev. Entomol. 26, 427–457 (1981).

    Article  Google Scholar 

  • 75.

    Bonebrake, T. C., Ponisio, L. C., Boggs, C. L. & Ehrlich, P. R. More than just indicators: A review of tropical butterfly ecology and conservation. Biol. Conserv. 143, 1831–1841 (2010).

    Article  Google Scholar 

  • 76.

    Twomey, E., Vestergaard, J. S., Venegas, P. J. & Summers, K. Mimetic divergence and the speciation continuum in the mimic poison frog ranitomeya imitator. Am. Nat. 187, 205–224 (2016).

    PubMed  Article  Google Scholar 

  • 77.

    Greene, H. W. & McDiarmid, R. W. Coral snake mimicry: Does it occur?. Science 213, 1207–1212 (1981).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 78.

    Wilson, J. S., Williams, K. A., Forister, M. L., von Dohlen, C. D. & Pitts, J. P. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 3, 1272 (2012).

    ADS  PubMed  Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    MIT Solve announces 2021 global challenges

    MIT and Danish university students unite to envision a more sustainable future