in

Limited flexibility in departure timing of migratory passerines at the East-Mediterranean flyway

  • 1.

    Flato, G. & Boer, G. Warming asymmetry in climate change simulations. Geophys. Res. Lett. 28, 195–198 (2001).

    ADS  Article  Google Scholar 

  • 2.

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Jonzén, N. et al. Rapid advance of spring arrival dates in long-distance migratory birds. Science 312, 1959–1961 (2006).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 4.

    Gordo, O. & Sanz, J. J. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146, 484–495 (2005).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Tøttrup, A. P. et al. Avian migrants adjust migration in response to environmental conditions en route. Biol. Lett. 4, 685–688 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Moussus, J. P., Clavel, J., Jiguet, F. & Julliard, R. Which are the phenologically flexible species? A case study with common passerine birds. Oikos 120, 991–998 (2011).

    Article  Google Scholar 

  • 7.

    Maggini, I., Cardinale, M., Sundberg, J. H., Spina, F. & Fusani, L. Recent phenological shifts of migratory birds at a Mediterranean spring stopover site: Species wintering in the Sahel advance passage more than tropical winterers. PLoS ONE 15, e0239489 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. 105, 16195–16200 (2008).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Saino, N. et al. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. R. Soc. B Biol. Sci. 278, 835–842 (2011).

    Article  Google Scholar 

  • 10.

    Jones, T. & Cresswell, W. The phenology mismatch hypothesis: Are declines of migrant birds linked to uneven global climate change?. J. Anim. Ecol. 79, 98–108 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. B Biol. Sci. 272, 2561–2569 (2005).

    Article  Google Scholar 

  • 12.

    Lehikoinen, E., Sparks, T. H. & Zalakevicius, M. Arrival and departure dates. Adv. Ecol. Res. 35, 1–31 (2004).

    Article  Google Scholar 

  • 13.

    Usui, T., Butchart, S. H. & Phillimore, A. B. Temporal shifts and temperature sensitivity of avian spring migratory phenology: A phylogenetic meta-analysis. J. Anim. Ecol. 86, 250–261 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Cotton, P. A. Avian migration phenology and global climate change. Proc. Natl. Acad. Sci. 100, 12219–12222 (2003).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Tøttrup, A. P., Thorup, K. & Rahbek, C. Changes in timing of autumn migration in North European songbird populations. Ardea 94, 527 (2006).

    Google Scholar 

  • 16.

    Haest, B., Hüppop, O. & Bairlein, F. Weather at the winter and stopover areas determines spring migration onset, progress, and advancements in Afro-Palearctic migrant birds. Proc. Natl. Acad. Sci. 117, 17056–17062 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Tøttrup, A. P. et al. Drought in Africa caused delayed arrival of European songbirds. Science 338, 1307–1307 (2012).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 18.

    Biebach, H. Sahara stopover in migratory flycatchers: Fat and food affect the time program. Experientia 41, 695–697 (1985).

    Article  Google Scholar 

  • 19.

    Aharon-Rotman, Y., Bauer, S. & Klaassen, M. A chain is as strong as its weakest link: Assessing the consequences of habitat loss and degradation in a long-distance migratory shorebird. Emu-Aust. Ornithol. 116, 199–207 (2016).

    Article  Google Scholar 

  • 20.

    Berthold, P. Control of Bird Migration (Springer Science & Business Media, Berlin, 1996).

    Google Scholar 

  • 21.

    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Ramenofsky, M. Reconsidering the role of photoperiod in relation to effects of precipitation and food availability on spring departure of a migratory bird. Proc. R. Soc. B Biol. Sci. 279, 15–16 (2012).

    Article  Google Scholar 

  • 23.

    Goymann, W., Lupi, S., Kaiya, H., Cardinale, M. & Fusani, L. Ghrelin affects stopover decisions and food intake in a long-distance migrant. Proc. Natl. Acad. Sci. 114, 1946–1951 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Berthold, P. The endogenous control of bird migration: A survey of experimental evidence. Bird Study 31, 19–27 (1984).

    Article  Google Scholar 

  • 25.

    Gwinner, E. Circannual clocks in avian reproduction and migration. Ibis 138, 47–63 (1996).

    Article  Google Scholar 

  • 26.

    Jenni, L. & Kéry, M. Timing of autumn bird migration under climate change: Advances in long-distance migrants, delays in short–distance migrants. Proc. R Soc. Lond. Ser. B Biol. Sci. 270, 1467–1471 (2003).

    Article  Google Scholar 

  • 27.

    Knudsen, E. et al. Challenging claims in the study of migratory birds and climate change. Biol. Rev. 86, 928–946 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Kovács, S., Fehérvári, P., Nagy, K., Harnos, A. & Csörgő, T. Changes in migration phenology and biometrical traits of Reed, Marsh and Sedge Warblers. Cent. Eur. J. Biol. 7, 115–125 (2012).

    Google Scholar 

  • 29.

    Rubolini, D., Møller, A. P., Rainio, K. & Lehikoinen, E. Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species. Clim. Res. 35, 135–146 (2007).

    Article  Google Scholar 

  • 30.

    Thorup, K., Tøttrup, A. P. & Rahbek, C. Patterns of phenological changes in migratory birds. Oecologia 151, 697–703 (2007).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Saino, N. et al. Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol. Lett. 7, 21–25 (2004).

    Article  Google Scholar 

  • 32.

    Briedis, M., Krist, M., Král, M., Voigt, C. C. & Adamík, P. Linking events throughout the annual cycle in a migratory bird–non-breeding period buffers accumulation of carry-over effects. Behav. Ecol. Sociobiol. 72, 93 (2018).

    Article  Google Scholar 

  • 33.

    Stanley, C. Q., MacPherson, M., Fraser, K. C., McKinnon, E. A. & Stutchbury, B. J. Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route. PLoS ONE 7, e40688 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Bussière, E. M., Underhill, L. G. & Altwegg, R. Patterns of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change. Glob. Change Biol. 21, 2179–2190 (2015).

    ADS  Article  Google Scholar 

  • 35.

    Ahola, M. et al. Variation in climate warming along the migration route uncouples arrival and breeding dates. Glob. Change Biol. 10, 1610–1617 (2004).

    ADS  Article  Google Scholar 

  • 36.

    Payevsky, V. A., Vysotsky, V. G. & Zelenova, N. P. Extinction of a Barred Warbler Sylvia nisoria population in Eastern Baltic: long-term monitoring, demography, and biometry. Avian Ecol. Behav 11, 89–105 (2003).

    Google Scholar 

  • 37.

    Newton, I. Population limitation in migrants. Ibis 146, 197–226 (2004).

    Article  Google Scholar 

  • 38.

    Ockendon, N., Johnston, A. & Baillie, S. R. Rainfall on wintering grounds affects population change in many species of Afro-Palaearctic migrants. J. Ornithol. 155, 905–917 (2014).

    Article  Google Scholar 

  • 39.

    Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).

    Article  Google Scholar 

  • 40.

    Walther, B. A. & Rahbek, C. Where do Palearctic migratory birds overwinter in Africa. Danks Orn Foren Tidsskr 96, 4–8 (2002).

    Google Scholar 

  • 41.

    Bairlein, F. The study of bird migrations—some future perspectives. Bird Study 50, 243–253 (2003).

    Article  Google Scholar 

  • 42.

    Altwegg, R. et al. Novel methods reveal shifts in migration phenology of barn swallows in South Africa. Proc. R. Soc. B Biol. Sci. 279, 1485–1490 (2012).

    Article  Google Scholar 

  • 43.

    Hüppop, O. & Ppop, K. H. North Atlantic oscillation and timing of spring migration in birds. Proc. R Soc. Lond. Ser. B Biol. Sci. 270, 233–240 (2003).

    Article  Google Scholar 

  • 44.

    Haest, B., Hüppop, O. & Bairlein, F. Challenging a 15-year-old claim: The North atlantic oscillation index as a predictor of spring migration phenology of birds. Glob. Change Biol. 24, 1523–1537 (2018).

    ADS  Article  Google Scholar 

  • 45.

    Bearhop, S. et al. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310, 502–504 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    MacMynowski, D. P. & Root, T. L. Climate and the complexity of migratory phenology: Sexes, migratory distance, and arrival distributions. Int. J. Biometeorol. 51, 361–373 (2007).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Milá, B., Wayne, R. K. & Smith, T. B. Ecomorphology of migratory and sedentary populations of the yellow-rumped warbler (Dendroica coronata). Condor 110, 335–344 (2008).

    Article  Google Scholar 

  • 48.

    Förschler, M. I. & Bairlein, F. Morphological shifts of the external flight apparatus across the range of a passerine (Northern Wheatear) with diverging migratory behaviour. PLoS ONE 6, e18732 (2011).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 49.

    Fiedler, W. Ecomorphology of the external flight apparatus of blackcaps (Sylvia atricapilla) with different migration behavior. Ann. N. Y. Acad. Sci. 1046, 253 (2005).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Tarka, M. et al. A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers. Proc. R. Soc. B Biol. Sci. 277, 2361–2369 (2010).

    Article  Google Scholar 

  • 51.

    Nowakowski, J. K., Szulc, J. & Remisiewicz, M. The further the flight, the longer the wing: Relationship between wing length and migratory distance in Old World reed and bush warblers (Acrocephalidae and Locustellidae). Ornis Fennica 91, 2 (2014).

    Google Scholar 

  • 52.

    Toews, D. P., Heavyside, J. & Irwin, D. E. Linking the wintering and breeding grounds of warblers along the Pacific Flyway. Ecol. Evol. 7, 6649–6658 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Pérez-Tris, J., Carbonell, R. & Tellería, J. L. A method for differentiating between sedentary and migratory Blackcaps Sylvia atricapilla in wintering areas of southern Iberia. Bird Study 46, 299–304 (1999).

    Article  Google Scholar 

  • 54.

    Kovács, S., Csörgő, T., Harnos, A., Fehérvári, P. & Nagy, K. Change in migration phenology and biometrics of two conspecific Sylvia species in Hungary. J. Ornithol. 152, 365–373 (2011).

    Article  Google Scholar 

  • 55.

    Lank, D. B. et al. Long term continental changes in wing length, but not bill length, of a long distance migratory shorebird. Ecol. Evol. 7, 3243–3256 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Yom-Tov, Y., Yom-Tov, S., Wright, J., Thorne, C. & Du Feu, R. Recent changes in body weight and wing length among some British passerine birds. Oikos 112, 91–101 (2006).

    Article  Google Scholar 

  • 57.

    Szekely, T., Lislevand, T. & Figuerola, J. Sexual size dimorphism in birds. Sex, size and gender roles: evolutionary studies of sexual size dimorphism, 27–37 (2007).

  • 58.

    Spina, F., Massi, A. & Montemaggiori, A. Back from Africa: Who’s running ahead? Aspects of differential migration of sex and age classes in Palearctic-African spring migrants. Ostrich 65, 137–150 (1994).

    Article  Google Scholar 

  • 59.

    Izhaki, I. & Maitav, A. Blackcaps Sylvia atricapilla stopping over at the desert edge; inter-and intra sexual differences in spring and autumn migration. Ibis 140, 234–243 (1998).

    Article  Google Scholar 

  • 60.

    Tøttrup, A. P. & Thorup, K. Sex-differentiated migration patterns, protandry and phenology in North European songbird populations. J. Ornithol. 149, 161–167 (2008).

    Article  Google Scholar 

  • 61.

    Shneor, O., Perlman, G., Balaban, A. & Yom-Tov, Y. Origin of passerine migratory waves: Evidence from the blackcap at a stopover site. Israel J. Ecol. Evol. 56, 135–151 (2010).

    Article  Google Scholar 

  • 62.

    Porkert, J. et al. Variation and long-term trends in the timing of breeding of different Eurasian populations of Common Redstart Phoenicurus phoenicurus. J. Ornithol. 155, 1045–1057 (2014).

    Article  Google Scholar 

  • 63.

    BirdLife International and Handbook of the Birds of the World., 2019.

  • 64.

    Houborg, R., Soegaard, H. & Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 106, 39–58 (2007).

    ADS  Article  Google Scholar 

  • 65.

    Papeş, M., Peterson, A. T. & Powell, G. V. Vegetation dynamics and avian seasonal migration: Clues from remotely sensed vegetation indices and ecological niche modelling. J. Biogeogr. 39, 652–664 (2012).

    Article  Google Scholar 

  • 66.

    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    ADS  Article  Google Scholar 

  • 67.

    Gersten, A. & Hahn, S. Timing of migration in Common Redstarts (Phoenicurus phoenicurus) in relation to the vegetation phenology at residence sites. J. Ornithol. 157, 1029–1036 (2016).

    Article  Google Scholar 

  • 68.

    Adole, T., Dash, J. & Atkinson, P. M. Characterising the land surface phenology of Africa using 500 m MODIS EVI. Appl. Geogr. 90, 187–199 (2018).

    Article  Google Scholar 

  • 69.

    Gorelick, N. et al. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    ADS  Article  Google Scholar 

  • 70.

    Kiat, Y. & Sapir, N. Life-history trade-offs result in evolutionary optimization of feather quality. Biol. J. Lin. Soc. 125, 613–624 (2018).

    Google Scholar 

  • 71.

    Miles, W. T. et al. Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long distance migratory birds. Glob. Change Biol. 23, 1400–1414 (2017).

    ADS  Article  Google Scholar 

  • 72.

    Geraci, M. & Bottai, M. Linear quantile mixed models. Stat. Comput. 24, 461–479 (2014).

    MathSciNet  MATH  Article  Google Scholar 

  • 73.

    Geraci, M. Linear quantile mixed models: The lqmm package for Laplace quantile regression. J. Stat. Softw. 57, 1–29 (2014).

    Article  Google Scholar 

  • 74.

    Koenker, R. & Bassett, G. J. Regression quantiles. Econometrica 2, 33–50 (1978).

    MathSciNet  MATH  Article  Google Scholar 

  • 75.

    Kokko, H., Gunnarsson, T. G., Morrell, L. J. & Gill, J. A. Why do female migratory birds arrive later than males?. J. Anim. Ecol. 75, 1293–1303 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Yosef, R. & Meissner, W. Seasonal age differences in weight and biometrics of migratory Dunlins (Calidris alpina) at Eilat Israel. Ostrich-J. Afr. Ornithol. 77, 67–72 (2006).

    Article  Google Scholar 

  • 77.

    Smith, R. J. & Moore, F. R. Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav. Ecol. Sociobiol. 57, 231–239 (2005).

    Article  Google Scholar 

  • 78.

    R: A language and environment for statistical computing. ( Vienna, Austria. URL https://www.R-project.org/, 2019).

  • 79.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R-Core-Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–139 URL: https://CRAN.R-project.org/package=nlme (2020).

  • 80.

    Lenth, R. V. Least-square means: The R package lsmeans. J. Stat. Softw. 69, 1–33. https://doi.org/10.18637/jss.v069.i01 (2016).

    Article  Google Scholar 

  • 81.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, Berlin, 2009).

    Google Scholar 

  • 82.

    Hahn, S. et al. Longer wings for faster springs: Wing length relates to spring phenology in a long distance migrant across its range. Ecol. Evol. 6, 68–77 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Berthold, P., Helbig, A. J., Mohr, G. & Querner, U. Rapid microevolution of migratory behaviour in a wild bird species. Nature 360, 668 (1992).

    ADS  Article  Google Scholar 

  • 84.

    Hedlund, J. S., Jakobsson, S., Kullberg, C. & Fransson, T. Long-term phenological shifts and intra-specific differences in migratory change in the willow warbler Phylloscopus trochilus. J. Avian Biol. 46, 97–106 (2015).

    Article  Google Scholar 

  • 85.

    Tryjanowski, P., Kuźniak, S. & Sparks, T. What affects the magnitude of change in first arrival dates of migrant birds?. J. Ornithol. 146, 200–205 (2005).

    Article  Google Scholar 

  • 86.

    Newson, S. E. et al. Long-term changes in the migration phenology of UK breeding birds detected by large-scale citizen science recording schemes. Ibis 158, 481–495 (2016).

    Article  Google Scholar 

  • 87.

    Zalakevicius, M., Bartkeviciene, G., Raudonikis, L. & Janulaitis, J. Spring arrival response to climate change in birds: a case study from eastern Europe. J. Ornithol. 147, 326–343 (2006).

    Article  Google Scholar 

  • 88.

    Spottiswoode, C. N., Tøttrup, A. P. & Coppack, T. Sexual selection predicts advancement of avian spring migration in response to climate change. Proc. R. Soc. B Biol. Sci. 273, 3023–3029 (2006).

    Article  Google Scholar 

  • 89.

    Yosef, R. & Wineman, A. Differential stopover of blackcap (Sylvia atricapilla) by sex and age at Eilat Israel. J. Arid Environ. 74, 360–367 (2010).

    ADS  Article  Google Scholar 

  • 90.

    Kristensen, M. W., Tøttrup, A. P. & Thorup, K. Migration of the Common Redstart (Phoenicurus phoenicurus): A Eurasian songbird wintering in highly seasonal conditions in the West African Sahel. Auk 130, 258–264 (2013).

    Article  Google Scholar 

  • 91.

    Moreau, R. E. Palaearctic-African Bird Migration Systems (Academic Press, London, 1972).

    Google Scholar 

  • 92.

    Tryjanowski, P., Kuźniak, S. & Sparks, T. Earlier arrival of some farmland migrants in western Poland. Ibis 144, 62–68 (2002).

    Article  Google Scholar 

  • 93.

    Ożarowska, A., Zaniewicz, G. & Meissner, W. in Annales Zoologici Fennici. 45–54 (BioOne).

  • 94.

    Wisz, M. S., Walther, B. & Rahbek, C. Using potential distributions to explore determinants of Western Palaearctic migratory songbird species richness in sub-Saharan Africa. J. Biogeogr. 34, 828–841 (2007).

    Article  Google Scholar 

  • 95.

    Yosef, R. & Markovets, M. Spring bird migration phenology in Eilat Israel. ZooKeys 31, 193 (2009).

    Article  Google Scholar 

  • 96.

    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 97.

    Wolff, C. et al. Reduced interannual rainfall variability in East Africa during the last ice age. Science 333, 743–747 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    MIT and Danish university students unite to envision a more sustainable future

    18S rRNA gene sequences of leptocephalus gut contents, particulate organic matter, and biological oceanographic conditions in the western North Pacific