in

Continental-scale analysis of shallow and deep groundwater contributions to streams

  • 1.

    Kløve, B. et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 518, 250–266 (2014).

    ADS  Article  Google Scholar 

  • 2.

    Boulton, A. & Hancock, P. Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes and management implications. Aust. J. Bot. 54, (2006).

  • 3.

    Tesoriero, A. J., Duff, J. H., Saad, D. A., Spahr, N. E. & Wolock, D. M. Vulnerability of streams to legacy nitrate sources. Environ. Sci. Technol. 47, 3623–3629 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 4.

    Briggs, M. A. et al. Hillslope groundwater discharges provide localized stream ecosystem buffers from regional per- and polyfluoroalkyl substances contamination. Hydrol. Process. 34, 2281–2291 (2020).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Ward, J. V. & Stanford, J. A. Thermal responses in the evolutionary ecology of aquatic insects. Annu. Rev. Entomol. 27, 97–117 (1982).

    Article  Google Scholar 

  • 6.

    Baird, O. E. & Krueger, C. C. Behavioral thermoregulation of brook and rainbow trout: comparison of summer habitat use in an Adirondack river, New York. Trans. Am. Fish. Soc. 132, 1194–1206 (2003).

    Article  Google Scholar 

  • 7.

    Torgersen, C., Ebersole, J. & Keenan, D. Primer for identifying cold-water refuges to protect and restore thermal diversity in riverine landscapes. EPA Sci. Guid. Handb. p. 91 (2012).

  • 8.

    Briggs, M. A. et al. Inferring watershed hydraulics and cold-water habitat persistence using multi-year air and stream temperature signals. Sci. Total Environ. 636, 1117–1127 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 9.

    Kaushal, S. S. et al. Rising stream and river temperatures in the United States. Front. Ecol. Environ. 8, 451–466 (2010).

    Article  Google Scholar 

  • 10.

    Isaak, D. J., Wollrab, S., Horan, D. & Chandler, G. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Change 113, 499–524 (2012).

    ADS  Article  Google Scholar 

  • 11.

    Luce, C. et al. Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest. Water Resour. Res. 50, 3428–3443 (2014).

    ADS  Article  Google Scholar 

  • 12.

    Leach, J. A. & Moore, R. D. Empirical stream thermal sensitivities may underestimate stream temperature response to climate warming. Water Resour. Res. 55, 5453–5467 (2019).

    ADS  Article  Google Scholar 

  • 13.

    Bundschuh, J. Modeling annual variations of spring and groundwater temperatures associated with shallow aquifer systems. J. Hydrol. 142, 427–444 (1993).

    ADS  Article  Google Scholar 

  • 14.

    Snyder, C. D., Hitt, N. P. & Young, J. A. Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecol. Appl. 25, 1397–1419 (2015).

    PubMed  Article  Google Scholar 

  • 15.

    Barclay, J. R., Starn, J. J., Briggs, M. A. & Helton, A. M. Improved prediction of management-relevant groundwater discharge characteristics throughout river networks. Water Resour. Res56, e2020WR028027 (2020).

    ADS  Article  Google Scholar 

  • 16.

    Kurylyk, B. L., MacQuarrie, K. T. B., Caissie, D. & McKenzie, J. M. Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling. Hydrol. Earth Syst. Sci. 19, 2469–2489 (2015).

    ADS  Article  Google Scholar 

  • 17.

    Constantz, J. Heat as a tracer to determine streambed water exchanges. Water Resour. Res. 44, 1–20 (2008).

    Article  CAS  Google Scholar 

  • 18.

    Parsekian, A. D., Singha, K., Minsley, B. J., Holbrook, W. S. & Slater, L. Multiscale geophysical imaging of the critical zone. Rev. Geophys. 53, 1–26 (2015).

    ADS  Article  Google Scholar 

  • 19.

    Maxwell, R. M. & Kollet, S. J. Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat. Geosci. 1, 665–669 (2008).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Eggleston, J. & McCoy, K. J. Assessing the magnitude and timing of anthropogenic warming of a shallow aquifer: example from Virginia Beach, USA. Hydrogeol. J. 23, 105–120 (2015).

    ADS  Article  Google Scholar 

  • 21.

    Williams, M. R. et al. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment. J. Hydrol. 511, 870–879 (2014).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Cozzarelli, I. M. et al. Geochemical and geophysical indicators of oil and gas wastewater can trace potential exposure pathways following releases to surface waters. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142909 (2020).

    Article  PubMed  Google Scholar 

  • 23.

    Thompson, T. J. et al. Groundwater discharges as a source of phytoestrogens and other agriculturally derived contaminants to streams. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142873 (2020).

  • 24.

    Condon, L. E. et al. Where is the bottom of a watershed? Water Resour. Res. 56, e2019WR026010 (2020).

    ADS  Article  Google Scholar 

  • 25.

    Barnes, R. T., Butman, D. E., Wilson, H. F. & Raymond, P. A. Riverine export of aged carbon driven by flow path depth and residence time. Environ. Sci. Technol. 52, 1028–1035 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 26.

    Zhi, W. & Li, L. The shallow and deep hypothesis: subsurface vertical chemical contrasts shape nitrate export patterns from different land uses. Environ. Sci. Technol. 54, 11915–11928 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 27.

    Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Essaid, H. I. & Caldwell, R. R. Evaluating the impact of irrigation on surface water – groundwater interaction and stream temperature in an agricultural watershed. Sci. Total Environ. 599–600, 581–596 (2017).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 29.

    Burns, D. A., Murdoch, P. S., Lawrence, G. B. & Michel, R. L. Effect of groundwater springs on NO3/- concentrations during summer in Catskill Mountain streams. Water Resour. Res. 34, 1987–1996 (1998).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Kalbus, E., Reinstorf, F. & Schirmer, M. Measuring methods for groundwater-surface water interactions: a review. Hydrol. Earth Syst. Sci. 10, 873–887 (2006).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Kelleher, C. et al. Investigating controls on the thermal sensitivity of Pennsylvania streams. Hydrol. Process. 26, 771–785 (2012).

    ADS  Article  Google Scholar 

  • 32.

    Gustard, A., Bullock, A. & Dixon, J. M. Low flow estimation in the United Kingdom. Inst. Hydrol. 102, 1–292 (1992).

    Google Scholar 

  • 33.

    Essaid, H. I., Baker, N. T. & McCarthy, K. A. Contrasting nitrogen fate in watersheds using agricultural and water quality information. J. Environ. Qual. 45, 1616–1626 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Jasechko, S., Kirchner, J. W., Welker, J. M. & McDonnell, J. J. Substantial proportion of global streamflow less than three months old. Nat. Geosci. 9, 126–129 (2016).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Letcher, B. H. et al. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags. PeerJ https://doi.org/10.7717/peerj.1727 (2016).

  • 36.

    Kędra, M. & Wiejaczka, Ł. Climatic and dam-induced impacts on river water temperature: Assessment and management implications. Sci. Total Environ. 626, 1474–1483 (2018).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 37.

    Tague, C., Grant, G., Farrell, M., Choate, J. & Jefferson, A. Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades. Clim. Change 86, 189–210 (2008).

    ADS  Article  Google Scholar 

  • 38.

    Bense, V., Kurylyk, B. L., van Daal, J., van der Ploeg, M. J. & Carey, S. K. Interpreting repeated temperature-depth profiles for groundwater flow. Water Resour. Res. 53, 8639–8647 (2017).

    ADS  Article  Google Scholar 

  • 39.

    Burns, E. R. et al. Thermal effect of climate change on groundwater-fed ecosystems. Water Resour. Res. 53, 3341–3351 (2017).

    ADS  Article  Google Scholar 

  • 40.

    Johnson, Z. C. et al. Paired air-water annual temperature patterns reveal hydrogeological controls on stream thermal regimes at watershed to continental scales. J. Hydrol587, 124929 (2020).

    Article  Google Scholar 

  • 41.

    Briggs, M. A. et al. Shallow bedrock limits groundwater seepage-based headwater climate refugia. Limnologica 68, 142–156 (2018).

    Article  Google Scholar 

  • 42.

    Land, M., Ingri, J., Andersson, P. S. & Ohlander, B. Ba/Sr, Ca/Sr and Sr-87/Sr-86 ratios in soil water and groundwater: implications for relative contributions to stream water discharge. Appl. Geochem. 15, 311–325 (2000).

    CAS  Article  Google Scholar 

  • 43.

    Winter, T. C., Harvey, J. W., Franke, O. L. & Alley, W. M. Ground water and surface water: a single resource. U.S. Geological Survey circular: 1139 (1998).

  • 44.

    Briggs, M. A. et al. Hydrogeochemical controls on brook trout spawning habitats in a coastal stream. Hydrol. Earth Syst. Sci. 22, 6383–6398 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Johnson, Z. C., Snyder, C. D. & Hitt, N. P. Landform features and seasonal precipitation predict shallow groundwater influence on temperature in headwater streams. Water Resour. Res. 53, 5788–5812 (2017).

    ADS  Article  Google Scholar 

  • 46.

    Jencso, K. G., Mcglynn, B. L., Gooseff, M. N., Bencala, K. E. & Wondzell, S. M. Hillslope hydrologic connectivity controls riparian groundwater turnover: implications of catchment structure for riparian buffering and stream water sources. 46, 1–18 (2010).

  • 47.

    Helton, A. M., Poole, G. C., Payn, R. A., Izurieta, C. & Stanford, J. A. Relative influences of the river channel, floodplain surface, and alluvial aquifer on simulated hydrologic residence time in a montane river floodplain. Geomorphology 205, 17–26 (2012).

    ADS  Article  Google Scholar 

  • 48.

    Idaho Department of Environmental Quality Technical Services Division. Upper North Fork Clearwater River Subbasin Assessment and Total Maximum Daily Loads. 2017 Lake Creek Temperature TMDL (2018).

  • 49.

    Ledford, S. H., Lautz, L. K. & Stella, J. C. Hydrogeologic processes impacting storage, fate, and transport of chloride from road salt in urban riparian aquifers. Environ. Sci. Technol. 50, 4979–4988 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 50.

    Hill, R. A., Weber, M. H., Leibowitz, S. G., Olsen, A. R. & Thornbrugh, D. J. The stream-catchment (StreamCat) dataset: a database of watershed metrics for the conterminous United States. J. Am. Water Resour. Assoc. 52, 120–128 (2016).

    ADS  Article  Google Scholar 

  • 51.

    Falcone, J. A., Carlisle, D. M. & Weber, L. C. Quantifying human disturbance in watersheds: variable selection and performance of a GIS-based disturbance index for predicting the biological condition of perennial streams. Ecol. Indic10, 264–273 (2010).

    Article  Google Scholar 

  • 52.

    U.S. Geological Survey. GAGES-II—Geospatial attributes of gages for evaluating streamflow: U.S. Geological Survey database. https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml (2011).

  • 53.

    de Graaf, I. E. M., Gleeson, T., (Rens) van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 54.

    Ledford, S. H., Zimmer, M. & Payan, D. Anthropogenic and biophysical controls on low flow hydrology in the Southeastern United States. Water Resour. Res. 56, 1–19 (2020).

    Article  Google Scholar 

  • 55.

    Kurylyk, B. L., Macquarrie, K. T. B. & Voss, C. I. Climate change impacts on the temperature and magnitude of groundwater discharge from shallow, unconfined aquifers. Water Resour. Res50, 3253–3274 (2014).

    ADS  Article  Google Scholar 

  • 56.

    Arismendi, I., Johnson, S. L., Dunham, J. B., Haggerty, R. & Hockman-Wert, D. The paradox of cooling streams in a warming world: regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States. Geophys. Res. Lett. 39, 1–7 (2012).

    Article  Google Scholar 

  • 57.

    Luce, C. H., Abatzoglou, J. T. & Holden, Z. A. The missing mountain water: slower westerlies decrease orographic enhancement in the pacific northwest USA. Science 342, 1360–1365 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 58.

    Johnson, Z. C. et al. Heed the data gap: guidelines for using incomplete datasets in annual stream temperature analyses. Ecol. Indic122, 107229 (2021).

    Article  Google Scholar 

  • 59.

    U.S. Geological Survey. USGS water data for the Nation: U.S. Geological Survey National Water Information System database. (2019).

  • 60.

    Isaak, D. J. et al. The NorWeST summer stream temperature model and scenarios for the Western U.S.: a crowd-sourced database and new geospatial tools foster a user community and predict broad climate warming of rivers and streams. Water Resour. Res. 53, 9181–9205 (2017).

    ADS  Article  Google Scholar 

  • 61.

    Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Technol. (2012)

  • 62.

    Chamberlain, S. rnoaa: ‘NOAA’ Weather Data from R. R package version 0.8.4. (2019).

  • 63.

    Falcone, J. A. U.S. Geological Survey GAGES-II time series data from consistent sources of land use, water use, agriculture, timber activities, dam removals, and other historical anthropogenic influences: U.S. Geological Survey data release (2017).

  • 64.

    Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods https://doi.org/10.1038/s41592-019-0686-2 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    Rosenberry, D. O., Briggs, M. A., Delin, G. & Hare, D. K. Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream. Water Resour. Res. 52, 1–18 (2016).

    Article  Google Scholar 

  • 66.

    Barlow, P. M. & Hess, K. M. Simulated Hydrologic Responses of the Quashnet River Stream-Aquifer System to Proposed Ground-Water Withdrawals, Cape Cod, Massachusetts. U.S. Geological Survey, Water-Resources Investigations Report 93-4-64, Marlborough (1993).

  • 67.

    Herberich, E., Sikorski, J. & Hothorn, T. A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS One 5, 1–8 (2010).

    Article  CAS  Google Scholar 

  • 68.

    Carslaw, D. C. & Ropkins, K. Openair – an r package for air quality data analysis. Environ. Model. Softw. 27–28, 52–61 (2012).

    Article  Google Scholar 

  • 69.

    Hare, D. K. Continental-scale analysis of shallow and deep groundwater contributions to streams. Haredkb/PairedAir-StreamAnnualTSignals https://doi.org/10.5281/zenodo.4313244 (2020).

    Article  Google Scholar 

  • 70.

    U.S. Geological Survey. USGS TNM Hydrography (NHD). https://hydro.nationalmap.gov/arcgis/rest/services/nhd/MapServer (2016).


  • Source: Ecology - nature.com

    MIT and Danish university students unite to envision a more sustainable future

    18S rRNA gene sequences of leptocephalus gut contents, particulate organic matter, and biological oceanographic conditions in the western North Pacific