in

Groundwater extraction reduces tree vitality, growth and xylem hydraulic capacity in Quercus robur during and after drought events

  • 1.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).

    Article  Google Scholar 

  • 2.

    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).

    Article  Google Scholar 

  • 3.

    Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L. & Trugman, A. T. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).

    ADS  Article  Google Scholar 

  • 4.

    Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. PNAS 102, 15144–15148 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. 24, 2339–2351 (2018).

    ADS  Article  Google Scholar 

  • 6.

    Kannenberg, S. A. et al. Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecol. Lett. 22, 119–127 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).

    ADS  Article  Google Scholar 

  • 8.

    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Cunningham, S. C., Thomson, J. R., MacNally, R., Read, J. & Baker, P. J. Groundwater change forecasts widespread forest dieback across an extensive floodplain system. Freshw. Biol. 56, 1494–1508 (2011).

    Article  Google Scholar 

  • 10.

    Tockner, K. & Stanford, J. Riverine flood plains: Present state and future trends. Environ. Conserv. 29, 308–330 (2002).

    Article  Google Scholar 

  • 11.

    Kløve, B. et al. Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification. Environ. Sci. Policy 14, 782–793 (2011).

    Article  Google Scholar 

  • 12.

    Griebler, C. & Avramov, M. Groundwater ecosystem services: A review. Freshw. Sci. 34, 355–367 (2015).

    Article  Google Scholar 

  • 13.

    Griebler, C., Avramov, M. & Hose, G. Groundwater ecosystems and their services: Current status and potential risks. In Atlas of Ecosystem Services (ed. Schröter, M.) 197–203 (Springer, 2019).

    Google Scholar 

  • 14.

    Kløve, B. et al. Groundwater dependent ecosystems part I: Hydroecological status and trends. Environ. Sci. Policy 14, 770–781 (2011).

    Article  Google Scholar 

  • 15.

    Kløve, B. et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 518, 250–266 (2014).

    ADS  Article  Google Scholar 

  • 16.

    Cuthbert, M. O. et al. Global patterns and dynamics of climate–groundwater interactions. Nat. Clim. Change 9, 137–141 (2019).

    ADS  Article  Google Scholar 

  • 17.

    Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).

    ADS  Article  Google Scholar 

  • 18.

    Green, T. R. et al. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 405, 532–560 (2011).

    ADS  Article  Google Scholar 

  • 19.

    Earman, S. & Dettinger, M. Potential impacts of climate change on groundwater resources—A global review. J. Water Clim. Change 2, 213–229 (2011).

    Article  Google Scholar 

  • 20.

    Skiadaresis, G., Schwarz, J. A. & Bauhus, J. Groundwater extraction in floodplain forests reduces radial growth and increases summer drought sensitivity of pedunculate oak trees (Quercus robur L.). Front. For. Glob. Change 2, 267 (2019).

    Article  Google Scholar 

  • 21.

    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

    PubMed  Article  Google Scholar 

  • 22.

    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Martínez-Vilalta, J. The rear window: Structural and functional plasticity in tree responses to climate change inferred from growth rings. Tree physiol. 38, 155–158 (2018).

    PubMed  Article  Google Scholar 

  • 24.

    Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120, 1909–1920 (2011).

    Article  Google Scholar 

  • 25.

    McDowell, N. G., Brodribb, T. J. & Nardini, A. Hydraulics in the 21st century. New Phytol. 224, 537–542 (2019).

    PubMed  Article  Google Scholar 

  • 26.

    Anderegg, W. R. L. & Meinzer, F. C. Wood anatomy and plant hydraulics in a changing climate. In Functional and Ecological Xylem Anatomy (ed. Hacke, U.) 235–253 (Springer, 2015).

    Google Scholar 

  • 27.

    Fonti, P. et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New phytol. 185, 42–53 (2010).

    PubMed  Article  Google Scholar 

  • 28.

    Tulik, M. The anatomical traits of trunk wood and their relevance to oak (Quercus robur L.) vitality. Eur. J. For. Res. 133, 845–855 (2014).

    Article  Google Scholar 

  • 29.

    Fonti, P. & Jansen, S. Xylem plasticity in response to climate. New Phytol. 195, 734–736 (2012).

    PubMed  Article  Google Scholar 

  • 30.

    Brodribb, T. J. Xylem hydraulic physiology: The functional backbone of terrestrial plant productivity. Plant Sci. 177, 245–251 (2009).

    CAS  Article  Google Scholar 

  • 31.

    He, P. et al. Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Glob. Change Biol. 26, 1833–1841 (2019).

    ADS  Article  Google Scholar 

  • 32.

    Barbaroux, C. & Bréda, N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol. 22, 1201–1210 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Bréda, N. & Granier, A. Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Ann. For. Sci. 53, 521–536 (1996).

    Article  Google Scholar 

  • 34.

    Pérez-de-Lis, G., Rozas, V., Vázquez-Ruiz, R. A. & García-González, I. Do ring-porous oaks prioritize earlywood vessel efficiency over safety? Environmental effects on vessel diameter and tyloses formation. Agric. For. Meteorol. 248, 205–214 (2018).

    ADS  Article  Google Scholar 

  • 35.

    Tumajer, J. & Treml, V. Response of floodplain pedunculate oak (Quercus robur L.) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. For. Ecol. Manag. 379, 185–194 (2016).

    Article  Google Scholar 

  • 36.

    Kniesel, B. M., Günther, B., Roloff, A. & von Arx, G. Defining ecologically relevant vessel parameters in Quercus robur L. for use in dendroecology: A pointer year and recovery time case study in Central Germany. Trees 29, 1041–1051 (2015).

    Article  Google Scholar 

  • 37.

    Gričar, J., de Luis, M., Hafner, P. & Levanič, T. Anatomical characteristics and hydrologic signals in tree-rings of oaks (Quercus robur L.). Trees 27, 1669–1680 (2013).

    Article  Google Scholar 

  • 38.

    Castagneri, D., Regev, L., Boaretto, E. & Carrer, M. Xylem anatomical traits reveal different strategies of two Mediterranean oaks to cope with drought and warming. Environ. Exp. Bot. 133, 128–138 (2017).

    Article  Google Scholar 

  • 39.

    Fonti, P. & García-González, I. Earlywood vessel size of oak as a potential proxy for spring precipitation in mesic sites. J. Biogeogr. 35, 2249–2257 (2008).

    Article  Google Scholar 

  • 40.

    González, I. G. & Eckstein, D. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol. 23, 497–504 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Pérez-de-Lis, G., Rossi, S., Vázquez-Ruiz, R. A., Rozas, V. & García-González, I. Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytol. 209, 521–530 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    García-González, I., Souto-Herrero, M. & Campelo, F. Ring-porosity and earlywood vessels: A review on extracting environmental information through time. IAWA J. 37, 295–314 (2016).

    Article  Google Scholar 

  • 43.

    Friedrichs, D. A. et al. Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 23, 729–739 (2009).

    Article  Google Scholar 

  • 44.

    Büntgen, U. et al. Tree-ring indicators of German summer drought over the last millennium. Quat. Sci. Rev. 29, 1005–1016 (2010).

    ADS  Article  Google Scholar 

  • 45.

    Bhuyan, U., Zang, C. & Menzel, A. Different responses of multispecies tree ring growth to various drought indices across Europe. Dendrochronologia 44, 1–8 (2017).

    Article  Google Scholar 

  • 46.

    Árvai, M., Morgós, A. & Kern, Z. Growth-climate relations and the enhancement of drought signals in pedunculate oak (Quercus robur L.) tree-ring chronology in Eastern Hungary. iForest 11, 267–274 (2018).

    Article  Google Scholar 

  • 47.

    Bramer, I. et al. Advances in monitoring and modelling climate at ecologically relevant scales. Adv. Ecol. Res. 58, 101–161 (2018).

    Article  Google Scholar 

  • 48.

    Sass-Klaassen, U., Sabajo, C. R. & den Ouden, J. Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 29, 171–175 (2011).

    Article  Google Scholar 

  • 49.

    Souto-Herrero, M., Rozas, V. & García-González, I. Earlywood vessels and latewood width explain the role of climate on wood formation of Quercus pyrenaica Willd. across the Atlantic-Mediterranean boundary in NW Iberia. For. Ecol. Manage. 425, 126–137 (2018).

    Article  Google Scholar 

  • 50.

    Fonti, P. & García-González, I. Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytol. 163, 77–86 (2004).

    Article  Google Scholar 

  • 51.

    Jacobsen, A. L., Valdovinos-Ayala, J. & Pratt, R. B. Functional lifespans of xylem vessels: Development, hydraulic function, and post-function of vessels in several species of woody plants. Am. J. Bot. 105, 142–150 (2018).

    PubMed  Article  Google Scholar 

  • 52.

    Jia, X. et al. Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agric. For. Meteorol. 228, 120–129 (2016).

    ADS  Article  Google Scholar 

  • 53.

    Carter, J. L. & White, D. A. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth. Tree Physiol. 29, 1407–1418 (2009).

    PubMed  Article  Google Scholar 

  • 54.

    Zolfaghar, S., Villalobos-Vega, R., Zeppel, M. & Eamus, D. The hydraulic architecture of Eucalyptus trees growing across a gradient of depth-to-groundwater. Funct. Plant Biol. 42, 888–898 (2015).

    PubMed  Article  Google Scholar 

  • 55.

    Horton, J. L., Kolb, T. E. & Hart, S. C. Responses of riparian trees to interannual variation in ground water depth in a semi-arid river basin. Plant Cell Environ. 24, 293–304 (2001).

    Article  Google Scholar 

  • 56.

    Gazol, A., Camarero, J. J., Anderegg, W. R. L. & Vicente-Serrano, S. M. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).

    Article  Google Scholar 

  • 57.

    Garzón, M. B., Alía, R., Robson, T. M. & Zavala, M. A. Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob. Ecol. Biogeogr. 20, 766–778 (2011).

    Article  Google Scholar 

  • 58.

    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Sperry, J. S., Meinzer, F. C. & McCulloh, K. A. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant Cell Environ. 31, 632–645 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Tyree, M. T. & Ewers, F. W. The hydraulic architecture of trees and other woody plants. New Phytol. 119, 345–360 (1991).

    Article  Google Scholar 

  • 61.

    Oosterbaan, A. & Nabuurs, G. J. Relationships between oak decline and groundwater class in The Netherlands. Plant Soil 136, 87–93 (1991).

    Article  Google Scholar 

  • 62.

    Leuschner, C. & Ellenberg, H. Ecology of Central European Forests (Springer, 2017).

    Google Scholar 

  • 63.

    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739 (2008).

    PubMed  Article  Google Scholar 

  • 64.

    McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).

    PubMed  Article  Google Scholar 

  • 65.

    Pellizzari, E., Camarero, J. J., Gazol, A., Sangüesa-Barreda, G. & Carrer, M. Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback. Glob. Change Biol. 22, 2125–2137 (2016).

    ADS  Article  Google Scholar 

  • 66.

    McCarroll, D., Whitney, M., Young, G. H. F., Loader, N. J. & Gagen, M. H. A simple stable carbon isotope method for investigating changes in the use of recent versus old carbon in oak. Tree Physiol. 37, 1021–1027 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 67.

    Hacke, U. G. Variable plant hydraulic conductance. Tree Physiol. 34, 105–108 (2014).

    PubMed  Article  Google Scholar 

  • 68.

    Hacke, U. G., Sperry, J. S., Wheeler, J. K. & Castro, L. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 26, 689–701 (2006).

    PubMed  Article  Google Scholar 

  • 69.

    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 70.

    Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690 (2017).

    ADS  Article  Google Scholar 

  • 71.

    Ehleringer, J. R. & Dawson, T. E. Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ. 15, 1073–1082 (1992).

    CAS  Article  Google Scholar 

  • 72.

    Roloff, A. Baumkronen: Verständnis und praktische Bedeutung eines komplexen Naturphänomens [Tree crowns: comprehension and practical meaning of a complex phenomenon]. Ulmer, Stuttgart [original in German] (2001).

  • 73.

    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).

    Article  Google Scholar 

  • 74.

    Bunn, A. G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251–258 (2010).

    Article  Google Scholar 

  • 75.

    R Core Team. R: A language and environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 76.

    García-González, I. & Fonti, P. Ensuring a representative sample of earlywood vessels for dendroecological studies: An example from two ring-porous species. Trees 22, 237–244 (2008).

    Article  Google Scholar 

  • 77.

    Kolb, K. J. & Sperry, J. S. Transport constraints on water use by the Great Basin shrub, Artemisia tridentata. Plant Cell Environ. 22, 925–936 (1999).

    Article  Google Scholar 

  • 78.

    Sterck, F. J., Zweifel, R., Sass-Klaassen, U. & Chowdhury, Q. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). Tree Physiol. 28, 529–536 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 79.

    von Arx, G., Crivellaro, A., Prendin, A. L., Čufar, K. & Carrer, M. Quantitative wood anatomy-practical guidelines. Front. Plant Sci. 7, 781 (2016).

    Google Scholar 

  • 80.

    Speer, J. H. Fundamentals of tree-ring research (University of Arizona Press, 2010).

  • 81.

    Cook, E. R. & Peters, K. The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. (1981).

  • 82.

    Carrer, M., von Arx, G., Castagneri, D. & Petit, G. Distilling allometric and environmental information from time series of conduit size: the standardization issue and its relationship to tree hydraulic architecture. Tree Physiol. 35, 27–33 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    ADS  Article  Google Scholar 

  • 84.

    Zink, M. et al. The German drought monitor. Environ. Res. Lett. 11, 74002 (2016).

    Article  Google Scholar 

  • 85.

    Samaniego, L., Kumar, R. & Zink, M. Implications of parameter uncertainty on soil moisture drought analysis in Germany. J. Hydrometeor. 14, 47–68 (2013).

    ADS  Article  Google Scholar 

  • 86.

    Samaniego, L., Kumar, R. & Attinger, S. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res. 46, 1–25 (2010).

    Google Scholar 

  • 87.

    Zang, C. & Biondi, F. treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 38, 431–436 (2015).

    Article  Google Scholar 

  • 88.

    Schwarz, J. et al. Quantifying growth responses of trees to drought—A critique of commonly used resilience indices and recommendations for future studies. Curr. For. Rep. 6, 185–200 (2020).

    Google Scholar 

  • 89.

    Jacobsen, A. L., Pratt, R. B., Venturas, M. D., & Hacke, U. G. Large volume vessels are vulnerable to water-stress-induced embolism in stems of poplar. IAWA J. 40(1), 4–S4 (2019).

  • 90.

    Cai, J., & Tyree, M. T. (2010). The impact of vessel size on vulnerability curves: data and models for within‐species variability in saplings of aspen, Populus tremuloides Michx. Plant Cell Environ. 33(7), 1059–1069.


  • Source: Ecology - nature.com

    MIT and Danish university students unite to envision a more sustainable future

    18S rRNA gene sequences of leptocephalus gut contents, particulate organic matter, and biological oceanographic conditions in the western North Pacific