in

A refined proposal for the origin of dogs: the case study of Gnirshöhle, a Magdalenian cave site

  • 1.

    Darwin, C. On the Origin of Species by Means of Natural Selection Vol. 167 (John Murray, London, 1859).

    Google Scholar 

  • 2.

    Kahlke, R.-D. The origin of Eurasian mammoth faunas (Mammuthus–Coelodonta faunal complex). Quatern. Sci. Rev. 96, 32–49 (2014).

    ADS  Article  Google Scholar 

  • 3.

    Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr. 37, 1407–1413 (2010).

    Google Scholar 

  • 4.

    Tarkhnishvili, D., Gavashelishvili, A. & Mumladze, L. Palaeoclimatic models help to understand current distribution of Caucasian forest species. Biol. J. Lin. Soc. 105, 231–248 (2012).

    Article  Google Scholar 

  • 5.

    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Lumibao, C. Y., Hoban, S. M. & McLachlan, J. Ice ages leave genetic diversity ‘hotspots’ in Europe but not in Eastern North America. Ecol. Lett. 20, 1459–1468 (2017).

    Article  Google Scholar 

  • 7.

    Williams, E. E. in Evolutionary Biology 47–89 (Springer, 1972).

  • 8.

    Peters, G. in Handbuch der Säugetiere Europas: Raubsäuger (Teil 1) (eds M. Stubbe & F. Krapp) 47–106 (AULA-Verlag, 1993).

  • 9.

    Leonard, J. A. et al. Megafaunal extinctions and the disappearance of a specialized wolf ecomorph. Curr. Biol. 17, 1146–1150 (2007).

    CAS  Article  Google Scholar 

  • 10.

    Perri, A. A wolf in dog’s clothing: Initial dog domestication and Pleistocene wolf variation. J. Archaeol. Sci. 68, 1–4. https://doi.org/10.1016/j.jas.2016.02.003 (2016).

    Article  Google Scholar 

  • 11.

    Weniger, G.-C. in The Pleistocene Old World: Regional Perspectives (ed Olga Soffer) 201–215 (Springer, 1987).

  • 12.

    Weniger, G.-C. Magdalenian settlement and subsistence in South-west Germany. Proc. Prehist. Soc. 53, 293–307. https://doi.org/10.1017/S0079497X0000623X (1987).

    ADS  Article  Google Scholar 

  • 13.

    Taller, A., Bolus, M. & Conard, N. The Magdalenian of Hohle Fels Cave and the resettlement of the Swabian Jura after the LGM. in Modes de Contacts et de Déplacements au Paléolithique Eurasiatique/Modes of Contact and Mobility During the Eurasian Palaeolithic. ERAUL Vol. 140, 383–399 (2014).

  • 14.

    Maier, A. Population and settlement dynamics from the Gravettian to the Magdalenian. Mitteilungen Gesellschaft Urgeschichte 26, 83–101 (2017).

    Google Scholar 

  • 15.

    Hulme-Beaman, A., Dobney, K., Cucchi, T. & Searle, J. B. An ecological and evolutionary framework for commensalism in anthropogenic environments. Trends Ecol. Evol. 31, 633–645. https://doi.org/10.1016/j.tree.2016.05.001 (2016).

    Article  PubMed  Google Scholar 

  • 16.

    Baumann, C. et al. Dietary niche partitioning among Magdalenian canids in southwestern Germany and Switzerland. Quatern. Sci. Rev. 227, 106032 (2020).

    Article  Google Scholar 

  • 17.

    Baumann, C., Bocherens, H., Drucker, D. G. & Conard, N. J. Fox dietary ecology as a tracer of human impact on Pleistocene ecosystems. PLoS ONE 15, e0235692. https://doi.org/10.1371/journal.pone.0235692 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Smith, B. D. A cultural niche construction theory of initial domestication. Biol. Theory 6, 260–271 (2011).

    Article  Google Scholar 

  • 19.

    Zeder, M. A. Domestication as a model system for niche construction theory. Evol. Ecol. 30, 325–348 (2016).

    Article  Google Scholar 

  • 20.

    Belyaev, D. K., Plyusnina, I. Z. & Trut, L. N. Domestication in the silver fox (Vulpes fulvus Desm): Changes in physiological boundaries of the sensitive period of primary socialization. Appl. Anim. Behav. Sci. 13, 359–370. https://doi.org/10.1016/0168-1591(85)90015-2 (1985).

    Article  Google Scholar 

  • 21.

    Germonpré, M., Láznickova-Galetova, M., Sablin, M. V. & Bocherens, H. in Hybrid Communities, Biosocial Approaches to Domestication and Other Trans-Species Relationships Routledge Studies in Anthropology (eds C. Stépanoff & J.-D. Vigne) (Routledge, 2018).

  • 22.

    Thalmann, O. & Perri, A. Population Genetics 1–34 (Springer, Cham, 2018).

    Google Scholar 

  • 23.

    MacHugh, D. E., Larson, G. & Orlando, L. Taming the past: Ancient DNA and the study of animal domestication. Annu. Rev. Anim. Biosci. 5, 329–351. https://doi.org/10.1146/annurev-animal-022516-022747 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Frantz, L. A. et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352, 1228–1231 (2016).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Thalmann, O. et al. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science 342, 871–874 (2013).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Bocherens, H. et al. Reconstruction of the Gravettian food-web at Předmostí I using multi-isotopic tracking (13C, 15N, 34S) of bone collagen. Quatern. Int. 359–360, 211–228. https://doi.org/10.1016/j.quaint.2014.09.044 (2015).  

    Article  Google Scholar 

  • 27.

    Prassack, K. A., DuBois, J., Lázničková-Galetová, M., Germonpré, M. & Ungar, P. S. Dental microwear as a behavioral proxy for distinguishing between canids at the Upper Paleolithic (Gravettian) site of Předmostí, Czech Republic. J. Archaeol. Sci. 115, 105092 (2020).

    Article  Google Scholar 

  • 28.

    Wilczyński, J. et al. Friend or foe? Large canid remains from Pavlovian sites and their archaeozoological context. J. Anthropol. Archaeol. 59, 101197. https://doi.org/10.1016/j.jaa.2020.101197 (2020).

    Article  Google Scholar 

  • 29.

    Street, M., Napierala, H. & Janssens, L. The late Paleolithic dog from Bonn-Oberkassel in context. in The Late Glacial Burial from Oberkassel Revisited 253–274. (Verlag Phillip von Zabern, Darmstadt, 2015).

  • 30.

    Janssens, L. et al. A new look at an old dog: Bonn-Oberkassel reconsidered. J. Archaeol. Sci. 92, 126–138. https://doi.org/10.1016/j.jas.2018.01.004 (2018).

    Article  Google Scholar 

  • 31.

    Rütimeyer, L. Die Knochenhöhle von Thayingen bei Schaffhausen. (F. Vieweg & Sohn, 1875).

  • 32.

    Napierala, H. & Uerpmann, H.-P. A ‘new’ palaeolithic dog from central Europe. Int. J. Osteoarchaeol. 22, 127–137. https://doi.org/10.1002/oa.1182 (2012).

    Article  Google Scholar 

  • 33.

    Napierala, H. Die Tierknochen aus dem Kesslerloch: Neubearbeitung der paläolithischen Fauna (Baudepartement des Kantons Schaffhausen, Kantonsarchäologie Schaffhausen, 2008).

    Google Scholar 

  • 34.

    Albrecht, G., Drautz, D. & Kind, J. Eine Station des Magdalénien in der Gnirshöhle bei Engen- Bittelbrunn im Hegau. Archäol. Korrespondenzblatt 7, 161–179 (1977).

    Google Scholar 

  • 35.

    Germonpré, M., Lázničková-Galetová, M., Losey, R. J., Räikkönen, J. & Sablin, M. V. Large canids at the Gravettian Předmostí site, the Czech Republic: The mandible. Quatern. Int. 359–360, 261–279. https://doi.org/10.1016/j.quaint.2014.07.012 (2015).

    Article  Google Scholar 

  • 36.

    Von den Driesch, A. A Guide to the Measurement of Animal Bones from Archaeological Sites: as Developed by the Institut für Palaeoanatomie, Domestikationsforschung und Geschichte der Tiermedizin of the University of Munich. Vol. 1 (Peabody Museum Press, 1976).

  • 37.

    Benecke, N. Archäozoologische Studien zur Entwicklung der Haustierhaltung. (Akademie Verlag, 1994).

  • 38.

    Ameen, C. et al. A landmark-based approach for assessing the reliability of mandibular tooth crowding as a marker of dog domestication. J. Archaeol. Sci. 85, 41–50. https://doi.org/10.1016/j.jas.2017.06.014 (2017).

    Article  Google Scholar 

  • 39.

    Bocherens, H., Drucker, D., Billiou, D. & Moussa, I. Une nouvelle approche pour évaluer l’état de conservation de l’os et du collagène pour les mesures isotopiques (datation au radiocarbone, isotopes stables du carbone et de l’azote). l’Anthropologie 109, 557–567 (2005).

  • 40.

    Bocherens, H. et al. Isotopic evidence for dietary ecology of cave lion (Panthera spelaea) in North-Western Europe: Prey choice, competition and implications for extinction. Quatern. Int. 245, 249–261. https://doi.org/10.1016/j.quaint.2011.02.023 (2011).

    Article  Google Scholar 

  • 41.

    Loog, L. et al. Ancient DNA suggests modern wolves trace their origin to a late Pleistocene expansion from Beringia. Mol. Ecol. 1–15 (2019).

  • 42.

    Nei, M. & Miller, J. C. A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. Genetics 125, 873–879 (1990).

    CAS  Article  Google Scholar 

  • 43.

    Botigué, L. R. et al. Ancient European dog genomes reveal continuity since the Early Neolithic. Nat. Commun. 8, 1–11 (2017).

    ADS  Article  Google Scholar 

  • 44.

    Nichols, R. Gene trees and species trees are not the same. Trends Ecol. Evol. 16, 358–364 (2001).

    CAS  Article  Google Scholar 

  • 45.

    Ollivier, M. et al. Dogs accompanied humans during the Neolithic expansion into Europe. Biol. Lett. 14, 20180286 (2018).

    Article  Google Scholar 

  • 46.

    Bergström, A. et al. Origins and genetic legacy of prehistoric dogs. Science 370, 557–564 (2020).

    Article  Google Scholar 

  • 47.

    Larson, G. et al. Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proc. Natl. Acad. Sci. 109, 8878 (2012).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Bocherens, H. et al. Paleobiological implications of the isotopic signatures (13C, 15N) of fossil mammal collagen in Scladina Cave (Sclayn, Belgium). Quatern. Res. 48, 370–380 (1997).

    ADS  Article  Google Scholar 

  • 49.

    Bocherens, H. & Drucker, D. Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: Case studies from recent and ancient terrestrial ecosystems. Int. J. Osteoarchaeol. 13, 46–53. https://doi.org/10.1002/oa.662 (2003).

    Article  Google Scholar 

  • 50.

    Krajcarz, M. T., Krajcarz, M. & Bocherens, H. Collagen-to-collagen prey-predator isotopic enrichment ( Δ 13C, Δ 15N) in terrestrial mammals – A case study of a subfossil red fox den. Palaeogeogr. Palaeoclimatol. Palaeoecol. 490, 563–570. https://doi.org/10.1016/j.palaeo.2017.11.044 (2018).

    Article  Google Scholar 

  • 51.

    von Seth, J., Niemann, J. & Dalén, L. in Paleogenomics 393–418 (Springer, 2018).

  • 52.

    Orlando, L. in Paleogenomics 325–351 (Springer, 2018).

  • 53.

    Janssens, L. A. A. From Wolf to Dog, Uitgever Niet Vastgesteld (2019).

  • 54.

    Zeder, M. A. The domestication of animals. J. Anthropol. Res. 68, 161–190 (2012).

    Article  Google Scholar 

  • 55.

    Zeder, M. A. Pathways to animal domestication. in Biodiversity in Agriculture: Domestication, Evolution, and Sustainability, 227–259 (2012).

  • 56.

    Albrecht, G. Magdalénien-Inventare vom Petersfels: Siedlungsarchäologische Ergebnisse der Ausgrabungen 1974–1976. Vol. 6 (Verlag Archaeologica Venatoria, 1979).

  • 57.

    Albrecht, G. in Urgeschichte in Baden-Württemberg (ed Hansjürgen Müller-Beck) 331–353 (Theiss Verlag, 1983).

  • 58.

    Albrecht, G. & Berke, H. in De la Loire à l’Oder BAR International Series (ed Marcel Otte) 465–473 (1988).

  • 59.

    Albrecht, G., Wong, G. L. & Münzel, S. C. in „All der holden Hügel ist keiner mir fremd…“ Festschrift zum 65. Geburtstag von Claus-Joachim Kind. (eds M. Baales & C. Pasda) 301–310 (Archaeologica Venatoria, 2019).

  • 60.

    Nobis, G. Die Wildsäugetiere in der Umwelt des Menschen von Oberkassel bei Bonn und das Domestikationsproblem von Wölfen im Jungpaläolithikum. in Bonner Jahrbücher, 367–376 (1986).

  • 61.

    Boessneck, J., von den Driesch, A., Lepiksaar, J., Riek, G. & Storch, G. Das Paläolithikum der Brillenhöhle bei Blaubeuren (Schwäbische Alb) II: Die Jungpleistozänen Tierknochenfunde aus der Brillenhöhle. (Verlag Müller & Gräff, 1973).

  • 62.

    Münzel, S. C. in Geißenklösterle: Chronostratigraphie, Paläoumwelt und Subsistenz im Mittel- und Jungpaläolithikum der Schwäbischen Alb (eds Nicholas J. Conard, M. Bolus, & Susanne C. Münzel) 147–327 (Kerns Verlag, 2019).

  • 63.

    Team, R. C. R: A Language and Environment for Statistical Computing, https://www.R-project.org.

  • 64.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—stable isotope Bayesian ellipses in R. J. Anim. Ecol. 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).

    Article  PubMed  Google Scholar 

  • 65.

    Stock, B. C. & Semmens, B. X. MixSIAR GUI User Manual v3.1. (2016).

  • 66.

    Cooper, A. & Poinar, H. N. Ancient DNA: Do it right or not at all. Science 289, 1139–1139 (2000).

    CAS  Article  Google Scholar 

  • 67.

    Knapp, M. & Hofreiter, M. Next generation sequencing of ancient DNA: Requirements, strategies and perspectives. Genes 1, 227–243 (2010).

    CAS  Article  Google Scholar 

  • 68.

    Peltzer, A. et al. EAGER: Efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).

    Article  Google Scholar 

  • 69.

    Andrews, S. Babraham Bioinformatics (Babraham Institute, Cambridge, 2010).

    Google Scholar 

  • 70.

    Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 1–7 (2016).

    Article  Google Scholar 

  • 71.

    Ginolhac, A., Rasmussen, M., Gilbert, M. T. P., Willerslev, E. & Orlando, L. mapDamage: Testing for damage patterns in ancient DNA sequences. Bioinformatics 27, 2153–2155 (2011).

    CAS  Article  Google Scholar 

  • 72.

    Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl. Acad. Sci. 111, 2229–2234 (2014).

    ADS  CAS  Article  Google Scholar 

  • 73.

    Skoglund, P., Ersmark, E., Palkopoulou, E. & Dalén, L. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr. Biol. 25, 1515–1519 (2015).

    CAS  Article  Google Scholar 

  • 74.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  Article  Google Scholar 

  • 75.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS  Article  Google Scholar 

  • 76.

    Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS  Article  Google Scholar 

  • 77.

    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).

    CAS  PubMed  Google Scholar 

  • 78.

    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolut. 4, vey016 (2018).

  • 79.

    Gill, M. S. et al. Improving Bayesian population dynamics inference: A coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).

    CAS  Article  Google Scholar 

  • 80.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901 (2018).

  • 81.

    Rambaut, A. FigTree 1.4. 2 Software. (Institute of Evolutionary Biology, Univ. Edinburgh, 2014).

  • 82.

    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS  Article  Google Scholar 

  • 83.

    Nei, M. Molecular Evolutionary Genetics. (Columbia University Press, 1987).


  • Source: Ecology - nature.com

    MIT and Danish university students unite to envision a more sustainable future

    18S rRNA gene sequences of leptocephalus gut contents, particulate organic matter, and biological oceanographic conditions in the western North Pacific