in

An ecological niche shift for Neanderthal populations in Western Europe 70,000 years ago

  • 1.

    d’Errico, F. & Banks, W. E. Identifying mechanisms behind Middle Paleolithic and Middle Stone Age cultural trajectories. Curr. Anthropol. 54, S371–S387 (2013).

    Article  Google Scholar 

  • 2.

    Richerson, P. J., Bettinger, R. L. & Boyd, R. Evolution on a restless planet: Were environmental variability and environmental change major drivers of human evolution? In Handbook of Evolution: The Evolution of Living Systems (Including Hominids) Vol. 2 (eds Wuketits, F. M. & Ayala, F. J.) 223–242 (Wiley-VCH, New York, 2005).

    Google Scholar 

  • 3.

    Pedersen, J., Maier, A. & Riede, F. A punctuated model for the colonisation of the Late Glacial margins of northern Europe by Hamburgian hunter-gatherers. Quartär 65, 85–104 (2018).

    Google Scholar 

  • 4.

    Riede, F. & Pedersen, J. B. Late glacial human dispersals in Northern Europe and disequilibrium dynamics. Hum. Ecol. 46, 621–632 (2018).

    Article  Google Scholar 

  • 5.

    Langley, M. C., Clarkson, C. & Ulm, S. Behavioural complexity in Eurasian Neanderthal Populations: A chronological examination of the archaeological evidence. Camb. Archaeol. J. 18, 289–307 (2008).

    Article  Google Scholar 

  • 6.

    Roebroeks, W. & Soressi, M. Neandertals revised. Proc. Natl. Acad. Sci. USA 113, 6372–6379 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Zilhão, J. et al. Last Interglacial Iberian Neandertals as fisher-hunter-gatherers. Science 367, 6485 (2020).

    Article  CAS  Google Scholar 

  • 8.

    Benito, B. M. et al. The ecological niche and distribution of Neanderthals during the Last Interglacial. J. Biogeogr. 44, 51–61 (2017).

    Article  Google Scholar 

  • 9.

    Nielsen, T. K. et al. Investigating Neanderthal dispersal above 55°N in Europe during the Last Interglacial Complex. Quat. Int. 431, 88–103 (2017).

    Article  Google Scholar 

  • 10.

    Bocquet-Appel, J.-P. & Tuffreau, A. Technological responses of neanderthals to macroclimatic variations (240,000–40,000 BP). Hum. Biol. 81, 287–307 (2009).

    PubMed  Article  Google Scholar 

  • 11.

    Daujeard, C. et al. Neanderthal subsistence strategies in Southeastern France between the plains of the Rhone Valley and the mid-mountains of the Massif Central (MIS 7 to MIS 3). Quat. Int. 252, 32–47 (2012).

    Article  Google Scholar 

  • 12.

    Discamps, E., Jaubert, J. & Bachellerie, F. Human choices and environmental constraints: deciphering the variability of large game procurement from Mousterian to Aurignacian times (MIS 5–3) in southwestern France. Quat. Sci. Rev. 30, 2755–2775 (2011).

    Article  ADS  Google Scholar 

  • 13.

    Hublin, J. J. The origin of Neandertals. Proc. Natl. Acad. Sci. USA 106, 16022–16027 (2009).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 14.

    Rogers, A. R., Bohlender, R. J. & Huff, C. D. Early history of Neanderthals and Denisovans. Proc. Natl. Acad. Sci. USA 114, 9859–9863 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Moncel, M.-H. et al. Early Levallois core technology between Marine Isotope Stage 12 and 9 in Western Europe. J. Hum. Evol. 139, 102735 (2020).

    PubMed  Article  Google Scholar 

  • 16.

    Castellano, S. et al. Patterns of coding variation in the complete exomes of three Neandertals. Proc. Natl. Acad. Sci. USA 111, 6666–6671 (2014).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 17.

    Mafessoni, F. & Prüfer, K. Better support for a small effective population size of Neandertals and a long shared history of Neandertals and Denisovans. Proc. Natl. Acad. Sci. USA 114, E10256–E10257 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Prüfer, K. et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358, 655–658 (2017).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 19.

    Moncel, M.-H., Fernandes, P., Willmes, M., James, H. & Grün, R. Rocks, teeth, and tools: New insights into early Neanderthal mobility strategies in South-Eastern France from lithic reconstructions and strontium isotope analysis. PLoS ONE 14, e0214925 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Peterson, A. T. et al. Ecological Niches and Geographic Distributions (Princeton University Press, Princeton, 2011).

    Google Scholar 

  • 21.

    Rogers, A. R., Bohlender, R. J. & Huff, C. D. Reply to Mafessoni and Prüfer: Inferences with and without singleton site patterns. Proc. Natl. Acad. Sci. USA 114, E10258–E10260 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Vaissié, E. et al. Techno-économie et signification culturelle de l’occupation moustérienne supérieure de Baume-Vallée (Haute-Loire). C.R. Palevol 16, 804–819 (2017).

    Article  Google Scholar 

  • 23.

    Bocquet-Appel, J.-P., Demars, P.-Y., Noiret, L. & Dobrowsky, D. Estimates of Upper Palaeolithic meta-population size in Europe from archaeological data. J. Archaeol. Sci. 32, 1656–1668 (2005).

    Article  Google Scholar 

  • 24.

    Delagnes, A., Jaubert, J. & Meignen, L. Les technocomplexes du Paléolithique moyen en Europe occidentale dans leur cadre diachronique et géographique. In Les Néandertaliens Biologie et cultures (eds Vandermeersch, B. & Maureille, B.) 213–229 (Editions du Comité des Travaux Historiques et Scientifiques, Aubervilliers, 2007).

    Google Scholar 

  • 25.

    Faivre, J.-P., Gravina, B., Bourguignon, L., Discamps, E. & Turq, A. Late Middle Palaeolithic lithic technocomplexes (MIS 5–3) in the northeastern Aquitaine Basin: Advances and challenges. Quat. Int. 433, 116–131 (2017).

    Article  Google Scholar 

  • 26.

    Jaubert, J., Bordes, J.-G., Discamps, E. & Gravina, B. A new look at the end of the Middle Palaeolithic Sequence in Southwestern France. In Characteristic Features of the Middle to Upper Paleolithic transition in Eurasia (eds Derevianko, A. P. & Shunkov, M. V.) 102–115 (Asian Palaeolithic Association, Tokyo, 2011).

    Google Scholar 

  • 27.

    Boëda, E. Levallois: A volumetric construction, methods, A technique. In The Definition and Intrepretation of Levallois Technology (eds Dibble, H. L. & Bar-Yosef, O.) 41–68 (Prehistory Press, Madison, 1995).

    Google Scholar 

  • 28.

    Boëda, E. L. débitage discoïde et le débitage Levallois récurrent centripède. Bull. Soc. Préhist. Fr. 90, 392–404 (1993).

    Article  Google Scholar 

  • 29.

    Bourguignon, L. Le Moustérien de type Quina: Nouvelles définitions d’une entité technique (University of Paris 10, Paris, 1997).

    Google Scholar 

  • 30.

    Turq, A. L. Moustérien de type Quina. Paléo Rev. Archéol. Préhist. 2, 310–343 (2000).

    Google Scholar 

  • 31.

    Turq, A. Approche technologique et économique du faciès Moustérien de type Quina: Étude préliminaire. Bull. Soc. Préhist. Fr. 86, 244–256 (1989).

    Article  Google Scholar 

  • 32.

    Collard, M., Vaesen, K., Cosgrove, R. & Roebroeks, W. The empirical case against the ‘demographic turn’ in Palaeolithic archaeology. Philos. Trans. R. Soc. B 371, 20150242 (2016).

    Article  Google Scholar 

  • 33.

    Soberón, J. & Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. USA 106, 19644–19650 (2009).

    PubMed  Article  ADS  Google Scholar 

  • 34.

    Cobos, M. E., Peterson, A. T., Barve, N. & Osorio-Olvera, L. kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Cobos, M. E., Osorio-Olvera, L., Soberón, J. & Peterson, A. T. ellipsenm: An R package for ecological niche’s characterization using ellipsoids. (2020).

  • 36.

    Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).

    Article  ADS  Google Scholar 

  • 37.

    Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 213, 63–72 (2008).

    Article  Google Scholar 

  • 38.

    Antoine, P. et al. Paléoenvironnements pléistocènes et peuplements paléolithiques dans le bassin de la Somme (nord de la France). Bull. Soc. Préhist. Fr. 100, 5–28 (2003).

    Article  Google Scholar 

  • 39.

    Locht, J.-L. et al. Timescales, space and culture during the Middle Palaeolithic in northwestern France. Quat. Int. 411, 129–148 (2016).

    Article  Google Scholar 

  • 40.

    Raynal, J.-P. et al. Land-use strategies, related tool-kits and social organization of lower and middle Palaeolithic groups in the South-East of the Massif Central, France. Quartär 60, 29–59 (2013).

    Google Scholar 

  • 41.

    Turq, A., Faivre, J.-P., Gravina, B. & Bourguignon, L. Building models of Neanderthal territories from raw material transports in the Aquitaine Basin (southwestern France). Quat. Int. 433, 88–101 (2017).

    Article  Google Scholar 

  • 42.

    Mathias, C., Bourguignon, L., Brenet, M., Grégoire, S. & Moncel, M.-H. Between new and inherited technical behaviours: A case study from the Early Middle Palaeolithic of Southern France. Archaeol. Anthropol. Sci. 12, 1–39 (2020).

    Article  Google Scholar 

  • 43.

    Lebegue, F. & Meignen, L. Quina ou pas ? Révision techno-économique d’un site moustérien charentien en Languedoc oriental: La grotte de la Roquette à Conqueyrac (Gard, France). Bull. Soc. Préhist. Fr. 111, 603–630 (2014).

    Article  Google Scholar 

  • 44.

    Moncel, M.-H. et al. La grotte du Figuier (Saint-Martin-d’Ardèche): Bilan des travaux récents sur un site du Paléolithique moyen et supérieur de la moyenne vallée du Rhône (Sud-Est de la France). Bull. Soc. Préhist. Fr. 109, 35–67 (2012).

    Article  Google Scholar 

  • 45.

    Slimak, L. Moustériens Quina Rhodaniens et Quina classiques dans le sud-est de la France. In Territoires, Déplacements, Mobilité, Echanges durant la Préhistoire (eds Jaubert, J. & Barbaza, M.) 95–113 (Comité des travaux historiques et scientifiques, Aubervilliers, 2005).

    Google Scholar 

  • 46.

    Sánchez Goñi, M. F., Bard, E., Landais, A., Rossignol, L. & d’Errico, F. Air–sea temperature decoupling in western Europe during the last interglacial–glacial transition. Nat. Geosci. 6, 837–841 (2013).

    Article  ADS  CAS  Google Scholar 

  • 47.

    Antoine, P., Munaut, A.-V. & Sommé, J. Réponse des environnements aux climats du début glaciaire weichsélien: Données de la France du Nord-Ouest [Responses of the environments to Early Weichselian climates. Records in north­western France]. Quaternaire 5, 151–156 (1994).

    Article  Google Scholar 

  • 48.

    Fletcher, W. J. et al. Millennial-scale variability during the last glacial in vegetation records from Europe. Quat. Sci. Rev. 29, 2839–2864 (2010).

    Article  ADS  Google Scholar 

  • 49.

    Baena, J., Moncel, M.-H., Cuartero, F., Chacón Navarro, M. G. & Rubio, D. Late Middle Pleistocene genesis of Neanderthal technology in Western Europe: The case of Payre site (south-east France). Quat. Int. 436, 212–238 (2017).

    Article  Google Scholar 

  • 50.

    Geneste, J.-M., Jaubert, J., Lenoir, M., Meignen, L. & Turq, A. Approche technologique des Moustériens Charentiens du Sud-Ouest de la France et du Languedoc oriental. Paléo Rev. Archéol. Préhist. 9, 101–142 (1997).

    Google Scholar 

  • 51.

    Geneste, J.-M. & Plisson, H. Production et utilisation de l’outillage lithique dans le Moustérien du sud-ouest de la France: les Tares à Sourzac, Vallé de l’Isle, Dordogne. Quat. Nova 6, 343–367 (1996).

    Google Scholar 

  • 52.

    Mathias, C. & Bourguignon, L. Cores-on-flakes and ramification during the middle palaeolithic in Southern France: A gradual process from the early to late middle palaeolithic?. J. Archaeol. Sci. Rep. 31, 102336 (2020).

    Google Scholar 

  • 53.

    Halstead, P. & O’Shea, J. Introduction: Cultural responses to risk and uncertainty. In Bad Year Economics: Cultural Responses to Risk and Uncertainty (eds Halstead, P. & O’Shea, J.) 1–7 (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  • 54.

    d’Errico, F. et al. Identifying early modern human ecological niche expansions and associated cultural dynamics in the South African Middle Stone Age. Proc. Natl. Acad. Sci. USA 114, 7869–7876 (2017).

    PubMed  Article  CAS  Google Scholar 

  • 55.

    Delagnes, A. & Meignen, L. Diversity of lithic production systems during the Middle Paleolithic in France. In Transitions Before the Transition: Evolution and Stability in the Middle Paleolithic and Middle Stone Age (eds Hovers, E. & Kuhn, S. L.) 85–107 (Springer Verlag, New York, 2006).

    Google Scholar 

  • 56.

    Hiscock, P., Turq, A., Faivre, J.-P. & Bourguignon, L. Quina procurement and tool production. In Lithic Materials and Paleolithic Societies (eds Adams, B. & Blades, B. S.) 232–246 (Wiley-Blackwell, New York, 2009).

    Google Scholar 

  • 57.

    Binford, L. R. Willow smoke and dogs’ tails: Hunter-gatherer settlement systems and archaeological site formation. Am. Antiq. 45, 4–20 (1980).

    Article  Google Scholar 

  • 58.

    Dibble, H. L. et al. Context, curation, and bias: An evaluation of the Middle Paleolithic collections of Combe-Grenal (France). J. Archaeol. Sci. 36, 2540–2550 (2009).

    Article  Google Scholar 

  • 59.

    R Core Team. R: A Language and Environment for STATISTICAL Computing (R Foundation for Statistical Computing, Vienna, 2019).

    Google Scholar 

  • 60.

    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article  Google Scholar 

  • 61.

    Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, Berlin, 2008).

    Google Scholar 

  • 62.

    Fernandes, P., Raynal, J.-P. & Moncel, M.-H. Middle Palaeolithic raw material gathering territories and human mobility in the southern Massif Central, France: first results from a petro-archaeological study on flint. J. Archaeol. Sci. 35, 2357–2370 (2008).

    Article  Google Scholar 

  • 63.

    Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).

    Article  Google Scholar 

  • 64.

    Argus, D. F. & Peltier, W. R. Constraining models of postglacial rebound using space geodesy: A detailed assessment of model ICE-5G (VM2) and its relatives. Geophys. J. Int. 181, 697–723 (2010).

    ADS  Google Scholar 

  • 65.

    Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    CAS  Article  ADS  Google Scholar 

  • 66.

    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article  ADS  Google Scholar 

  • 67.

    Vrac, M., Marbaix, P., Paillard, D. & Naveau, P. Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe. Clim. Past 3, 669–682 (2007).

    Article  Google Scholar 

  • 68.

    Pfeiffer, M., Spessa, A. & Kaplan, J. O. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geosci. Model Dev. 6, 643–685 (2013).

    Article  ADS  CAS  Google Scholar 

  • 69.

    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).

    Article  Google Scholar 

  • 70.

    Cobos, M. E., Peterson, A. T., Osorio-Olvera, L. & Jiménez-García, D. An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecol. Inform. 53, 100983 (2019).

    Article  Google Scholar 

  • 71.

    Anderson, R. P., Lew, D. & Peterson, A. T. Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol. Model. 162, 211–232 (2003).

    Article  Google Scholar 

  • 72.

    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).

    PubMed  Article  Google Scholar 

  • 73.

    Owens, H. L. et al. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol. Model. 263, 10–18 (2013).

    Article  Google Scholar 

  • 74.

    Nuñez-Penichet, C., Cobos, M. E. & Soberon, J. Non-overlapping climatic niches and biogeographic barriers explain disjunct distributions of continental Urania moths. Front. Biogeogr. 13(2), e52142 (2021).

    Google Scholar 

  • 75.

    Qiao, H. et al. NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios. Ecography 39, 805–813 (2016).

    Article  Google Scholar 

  • 76.

    Mammola, S. Assessing similarity of n-dimensional hypervolumes: Which metric to use?. J. Biogeogr. 46, 2012–2023 (2019).

    Article  Google Scholar 

  • 77.

    Van Aelst, S. & Rousseeuw, P. Minimum volume ellipsoid. WIREs. Comput. Stat. 1, 71–82 (2009).

    Article  Google Scholar 

  • 78.

    Murdoch, D. J. & Chow, E. D. A graphical display of large correlation matrices. Am. Stat. 50, 178–180 (1996).

    Google Scholar 


  • Source: Ecology - nature.com

    How to reduce the environmental impact of your next virtual meeting

    Startup empowers women to improve access to safe drinking water