in

The Fennoscandian Shield deep terrestrial virosphere suggests slow motion ‘boom and burst’ cycles

  • 1.

    Edwards, K. J., Becker, K. & Colwell, F. The deep, dark energy biosphere: intraterrestrial life on Earth. Ann. Rev. Earth Planet Sci. 40, 551–568 (2012).

    CAS  Article  Google Scholar 

  • 2.

    Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D’Hondt, S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Nat. Acad. Sci. USA 109, 16213–16216 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Nat. Acad. Sci. USA 115, 6506–6511 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).

    CAS  Article  Google Scholar 

  • 5.

    Lau, M. C. Y. et al. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc. Nat. Acad. Sci. USA 113, E7927–E7936 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Lopez-Fernandez, M., Broman, E., Simone, D., Bertilsson, S. & Dopson, M. Statistical analysis of community RNA transcripts between organic carbon and ‘geogas’ fed continental deep biosphere groundwaters. mBio 10, e01470–01419 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Lopez-Fernandez, M. et al. Metatranscriptomes reveal all three domains of life are active, but are dominated by bacteria in the Fennoscandian crystalline granitic continental deep biosphere. mBio 9, e01792–01718 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Borgonie, G. et al. Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa. Nat. Comm. 6, 8952 (2015).

    CAS  Article  Google Scholar 

  • 9.

    Wilkins, M. J. et al. Trends and future challenges in sampling the deep terrestrial biosphere. Front. Microbiol. 5, 481 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Guemes, A. G. C. et al. Viruses as winners in the Game of Life. Ann. Rev. Virol. 3, 197–214 (2016).

    Article  CAS  Google Scholar 

  • 11.

    Dávila-Ramos, S. et al. A review on viral metagenomics in extreme environments. Front. Microbiol. 10, 2403 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Roudnew, B. et al. Bacterial and virus-like particle abundances in purged and unpurged groundwater depth profiles. Ground Water Monit. Remed. 32, 72–77 (2012).

    Article  Google Scholar 

  • 13.

    Nyyssönen, M. et al. Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. ISME J. 8, 126–138 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 14.

    Daly, R. A. et al. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. Nat. Microbiol. 1, 16146 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Anderson, R. E., Brazelton, W. J. & Baross, J. A. Is the genetic landscape of the deep subsurface biosphere affected by viruses? Front. Microbiol. 2, 219–219 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Anderson, R. E., Brazelton, W. J. & Baross, J. A. The deep viriosphere: assessing the viral impact on microbial community dynamics in the deep subsurface. Rev. Min. Geochem. 75, 649–675 (2013).

    CAS  Article  Google Scholar 

  • 17.

    Labonté, J. M. et al. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population. Front. Microbiol. 6, 349–349 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 18.

    Hallbeck, L. & Pedersen, K. Characterization of microbial processes in deep aquifers of the Fennoscandian Shield. Appl. Geochem. 23, 1796–1819 (2008).

    CAS  Article  Google Scholar 

  • 19.

    Ström, A., Andersson, J., Skagius, K. & Winberg, A. Site descriptive modelling during characterization for a geological repository for nuclear waste in Sweden. Appl. Geochem. 23, 1747–1760 (2008).

    Article  CAS  Google Scholar 

  • 20.

    Jägevall, S., Rabe, L. & Pedersen, K. Abundance and diversity of biofilms in natural and artificial aquifers of the Äspö Hard Rock Laboratory, Sweden. Microb. Ecol. 61, 410–422 (2011).

    PubMed  Article  Google Scholar 

  • 21.

    Pedersen, K. Influence of H2 and O2 on sulphate-reducing activity of a subterranean community and the coupled response in redox potential. FEMS Microbiol. Ecol. 82, 653–665 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Pedersen, K. Metabolic activity of subterranean microbial communities in deep granitic groundwater supplemented with methane and H2. ISME J. 7, 839–849 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Lopez-Fernandez, M., Broman, E., Wu, X., Bertilsson, S. & Dopson, M. Investigation of viable taxa in the deep terrestrial biosphere suggests high rates of nutrient recycling. FEMS Microbiol. Ecol. 94, fiy121 (2018).

  • 24.

    Lopez-Fernandez, M., Åström, M., Bertilsson, S. & Dopson, M. Depth and dissolved organic carbon shape microbial communities in surface influenced but not ancient saline terrestrial aquifers. Front. Microbiol. 9, 2880 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Wu, X. et al. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. ISME J. 10, 1192–1203 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Kyle, J. E., Eydal, H. S., Ferris, F. G. & Pedersen, K. Viruses in granitic groundwater from 69 to 450 m depth of the Äspö hard rock laboratory, Sweden. ISME J. 2, 571–574 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Eydal, H. S., Jagevall, S., Hermansson, M. & Pedersen, K. Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater. ISME J. 3, 1139–1147 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Hurwitz, B. L. & Sullivan, M. B. The Pacific Ocean Virome (POV): A marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS ONE 8, e57355 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Angly, F. E. et al. The marine viromes of four oceanic regions. PLoS Biol. 4, e368 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 31.

    Holmfeldt, K. et al. Twelve previously unknown phage genera are ubiquitous in global oceans. Proc. Nat. Acad. Sci. USA 110, 12798–12803 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Nilsson, E. et al. Genomic and seasonal variations among aquatic phages infecting the Baltic Sea Gammaproteobacterium Rheinheimera sp. strain BAL341. Appl. Environ. Microbiol. 85, e01003-19, https://doi.org/10.1128/aem.01003-19 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Hurwitz, B. L., U’Ren, J. M. & Youens-Clark, K. Computational prospecting the great viral unknown. FEMS Microbiol. Lett. 363, fnw077 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 34.

    Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ 5, e3243–e3243 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Lundin, D. & Holmfeldt, K. The deep terrestrial virosphere. Figshare, https://doi.org/10.6084/m6089.figshare.11590494.v11590491 (2020).

  • 36.

    Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 37.

    Kadnikov, V. V. et al. Genomes of three bacteriophages from the deep subsurface aquifer. Data Brief. 22, 488–491 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Starnawski, P. et al. Microbial community assembly and evolution in subseafloor sediment. Proc. Nat. Acad. Sci. USA 114, 2940–2945 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Broman, E., Sjöstedt, J., Pinhassi, J. & Dopson, M. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome 5, 96 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev. 40, 258–272 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048, https://doi.org/10.1038/nmicrobiol.2016.48 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004, https://doi.org/10.1038/nbt.4229 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Herrmann, M. et al. Predominance of Cand. Patescibacteria in groundwater is caused by their preferential mobilization from soils and flourishing under oligotrophic conditions. Front. Microbiol. 10, 1407 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Comm. 7, https://doi.org/10.1038/ncomms13219 (2016).

  • 46.

    Bouvier, T. & del Giorgio, P. A. Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ. Microbiol. 9, 287–297 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Craig, W. A. & Andes, D. R. in Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases (eds Bennett, J. E., Dolin, R. & Blaser, M. J.) 278–292.e274 (2015).

  • 49.

    Hubalek, V. et al. Connectivity to the surface determines diversity patterns in subsurface aquifers of the Fennoscandian shield. ISME J. 10, 2447–2458 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Laaksoharju, M., Gascoyne, M. & Gurban, I. Understanding groundwater chemistry using mixing models. Appl. Geochem. 23, 1921–1940 (2008).

    CAS  Article  Google Scholar 

  • 51.

    Mathurin, F. A., Astrom, M. E., Laaksoharju, M., Kalinowski, B. E. & Tullborg, E. L. Effect of tunnel excavation on source and mixing of groundwater in a coastal granitoidic fracture network. Environ. Sci. Technol. 46, 12779–12786 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Smellie, J. A. T., Laaksoharju, M., Wikberg, P. & Äspö, S. E. Sweden—a natural groundwater-flow model derived from hydrogeological observations. J. Hydrol. 172, 147–169 (1995).

    CAS  Article  Google Scholar 

  • 53.

    John, S. G. et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ. Microbiol. Rep. 3, 195–202 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Boisvert, S., Raymond, F., Godzaridis, E., Laviolette, F. & Corbeil, J. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol. 13, R122 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 56.

    Rodriguez-R, L. M., Gunturu, S., Tiedje, J. M., Cole, J. R. & Konstantinidis, K. T. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems 3, e00039–00018 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985–e985 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 58.

    Brum, J. R. et al. Illuminating structural proteins in viral “dark matter” with metaproteomics. Proc. Nat. Acad. Sci. USA 113, 2436–2441 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Hugerth, L. W. et al. Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biol. 16, 279 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 60.

    Dupont, C. L. et al. Functional tradeoffs underpin salinity-driven divergence in microbial community composition. PloS One 9, e89549 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 61.

    Chow, C. E., Winget, D. M., White, R. A., 3rd, Hallam, S. J. & Suttle, C. A. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions. Front. Microbiol. 6, 265, https://doi.org/10.3389/fmicb.2015.00265 (2015).

  • 62.

    Tangherlini, M., Dell’Anno, A., Zeigler Allen, L., Riccioni, G. & Corinaldesi, C. Assessing viral taxonomic composition in benthic marine ecosystems: reliability and efficiency of different bioinformatic tools for viral metagenomic analyses. Sci. Rep. 6, 28428, https://doi.org/10.1038/srep28428 (2016).

  • 63.

    Sible, E. et al. Survey of viral populations within Lake Michigan nearshore waters at four Chicago area beaches. Data Brief. 5, 9–12 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Wu, X. et al. Potential for hydrogen-oxidizing chemolithoautotrophic and diazotrophic populations to initiate biofilm formation in oligotrophic, deep terrestrial subsurface waters. Microbiome 5, 37, https://doi.org/10.1186/s40168-40017-40253-y (2017).

  • 66.

    Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Sullivan, M. J., Petty, N. K. & Beatson, S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Simone, D. Domenico-simone/deep-metaviriomes: analysis for paper. Zenodo https://doi.org/10.5281/zenodo.3700451 (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Startup empowers women to improve access to safe drinking water

    Multifaceted characteristics of dryland aridity changes in a warming world