in

Plasticity in timing of avian breeding in response to spring temperature differs between early and late nesting species

  • 1.

    Dunn, P. O. & Winkler, D. W. Effects of climate change on timing of breeding and reproductive success in birds. In Effects of Climate Change on Birds (eds Møller, A. P. et al.) 113–128 (Oxford University Press, Oxford, 2010).

    Google Scholar 

  • 2.

    Schwartz, M. D., Ahas, R. & Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12, 343–351 (2006).

    ADS  Article  Google Scholar 

  • 3.

    Jones, T. & Cresswell, W. The phenology mismatch hypothesis: are declines of migrant birds linked to uneven global climate change?. J. Anim. Ecol. 79, 98–108 (2010).

    PubMed  Article  Google Scholar 

  • 4.

    Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109. https://doi.org/10.1038/s41467-019-10924-4 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 7.

    Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. U.S.A. 105, 16195–16200 (2008).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Raquel, A. J. et al. Timing of nesting of upland-nesting ducks in the Canadian prairies and its relation to spring wetland conditions. Can. J. Zool. 94, 575–581 (2016).

    Article  Google Scholar 

  • 9.

    Saalfeld, S. T. & Lanctot, R. B. Multispecies comparisons of adaptability to climate change: A role for life-history characteristics?. Ecol. Evol. 7, 10492–10502 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Lynch, H. J., Fagan, W. F., Naveen, R., Trivelpiece, S. G. & Trivelpiece, W. Z. Differential advancement of breeding phenology in response to climate may alter staggered breeding among sympatric pygoscelid penguins. Mar. Ecol. Prog. Ser. 454, 135–145 (2012).

    ADS  Article  Google Scholar 

  • 11.

    Gurney, K. E. B. et al. Time constraints in temperate-breeding species: influence of growing season length on reproductive strategies. Ecography 34, 628–636 (2011).

    Article  Google Scholar 

  • 12.

    Drever, M. C. & Clark, R. G. Spring temperature, clutch initiation date and duck nest success: a test of the mismatch hypothesis. J. Anim. Ecol. 76, 139–148 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Oja, H. & Pöysä, H. Spring phenology, latitude, and the timing of breeding in two migratory ducks: implications of climate change impacts. Ann. Zool. Fenn. 44, 475–485 (2007).

    Google Scholar 

  • 14.

    Clark, R. G., Pöysä, H., Runko, P. & Paasivaara, A. Spring phenology and timing of breeding in short-distance migrant birds: phenotypic responses and offspring recruitment patterns in common goldeneyes. J. Avian Biol. 45, 457–465 (2014).

    Article  Google Scholar 

  • 15.

    Drever, M. C. et al. Population vulnerability to climate change linked to timing of breeding in boreal ducks. Glob. Change Biol. 18, 480–492 (2012).

  • 16.

    Nussey, D. H., Postma, E., Gienapp, P. & Visser, M. E. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Caro, S. P. et al. Local adaptation of timing of reproduction: females are in the driver’s seat. Funct. Ecol. 23, 172–179 (2009).

    Article  Google Scholar 

  • 18.

    Martin, J. G. A., Nussey, D. H., Alastair, J. W. & Réale, D. Measuring individual differences in reaction norms in field and experimental studies: a power analysis of random regression models. Methods Ecol. Evol. 2, 362–374 (2011).

    Article  Google Scholar 

  • 19.

    Arzel, C. et al. Early springs and breeding performance in two sympatric duck species with different migration strategies. Ibis 156, 288–298 (2014).

    Article  Google Scholar 

  • 20.

    Stafford, J. D., Kaminski, R. M., Reinecke, K. J. & Manley, S. W. Waste rice for waterfowl in the Mississippi Alluvial Valley. J. Wildl. Manag. 70, 61–69 (2006).

    Article  Google Scholar 

  • 21.

    Porlier, M. et al. Variation in phenotypic plasticity and selection patterns in blue tit breeding time: between-and within-population comparisons. J. Anim. Ecol. 81, 1041–1051 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Cooper, W. E. Dynamics and production of a natural population of a fresh-water amphipod, Hyalella azteca. Ecol. Monogr. 35, 377–394 (1965).

    Article  Google Scholar 

  • 23.

    Menon, P. S. Population ecology of Gammarus lacustris sars in Big Island Lake. I Habitat preference and relative abundance. Hydrobiologia 33, 14–32 (1969).

    Article  Google Scholar 

  • 24.

    Hargrave, B. T. Distribution, growth, and seasonal abundance of Hyalella azteca (Amphipoda) in relation to sediment microflora. J. Fish. Res. Board. Can. 27, 685–699 (1970).

    Article  Google Scholar 

  • 25.

    Dawson, A. Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability. Philos. Trans. R. Soc. B 363, 1621–1633. https://doi.org/10.1098/rstb.2007.0004 (2008).

    Article  Google Scholar 

  • 26.

    Clark, R. G. & Shutler, D. Avian habitat selection: Pattern from process in nest-site use by ducks?. Ecology 80, 272–287 (1999).

    Article  Google Scholar 

  • 27.

    Devries, J. H., Brook, R. W., Howerter, D. W. & Anderson, M. G. Effects of spring body condition and age on reproduction in mallards (Anas platyrhynchos). Auk 125, 618–628 (2008).

    Article  Google Scholar 

  • 28.

    Raquel, A. J., Devries, J. H., Howerter, D. W. & Clark, R. G. Reproductive consequences of climate variability in migratory birds: evidence for species-specific responses to spring phenology and cross-seasonal effects. Oecologia 191, 217–229 (2019).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Vardanis, Y., Klaassen, R. H., Strandberg, R. & Alerstam, T. Individuality in bird migration: routes and timing. Biol. Lett. 7, 502–505 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Phil. Trans. R. Soc. B 281, 20132161 (2014).

    Google Scholar 

  • 31.

    Blums, P. & Clark, R. G. Correlates of lifetime reproductive success in three species of European ducks. Oecologia 140, 61–67 (2004).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Dawson, R. D. & Clark, R. G. Effects of hatching date and egg size on growth, recruitment, and adult size of lesser scaup. Condor 102, 930–935 (2000).

    Article  Google Scholar 

  • 33.

    Traylor, J. J. & Alisauskas, R. T. Effects of intrinsic and extrinsic factors on survival of white-winged scoter (Melanitta fusca deglandi) ducklings. Auk 123, 67–81 (2006).

    Article  Google Scholar 

  • 34.

    Koons, D. N., Arnold, T. W. & Schaub, M. Understanding the demographic drivers of realized population growth rates. Ecol. Appl. 27, 2102–2115 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Nussey, D. H., Wilson, A. J. & Brommer, J. E. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20, 831–844 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Ruusila, V., Pöysä, H. & Runko, P. Costs and benefits of female-biased natal philopatry in the common goldeneye. Behav. Ecol. 12, 686–690 (2001).

    Article  Google Scholar 

  • 37.

    Alisauskas, R. T., Traylor, J. J., Swoboda, C. J. & Kehoe, F. P. Components of population growth rate for white–winged scoters in Saskatchewan, Canada. Anim. Biodiv. Conserv. 27, 451–460 (2004).

    Google Scholar 

  • 38.

    Traylor, J. J., Alisauskas, R. T. & Kehoe, F. P. Nesting ecology of white-winged scoters (Melanitta fusca deglandi) at Redberry Lake, Saskatchewan. Auk 121, 950–962 (2004).

    Article  Google Scholar 

  • 39.

    Weller, M. W. A simple field candler for waterfowl eggs. J. Wildl. Manag. 20, 111–113 (1956).

    Article  Google Scholar 

  • 40.

    Arnold, T. W., Devries, J. H. & Howerter, D. W. Factors that affect renesting in mallards (Anas platyrhynchos). Auk 127, 212–221 (2010).

    Article  Google Scholar 

  • 41.

    Pöysä, H. Tracking ice phenology by migratory waterbirds: settling phenology and breeding success of species with divergent population trends. J. Avian Biol. 50, 2019. https://doi.org/10.1111/jav.02327 (2019).

    Article  Google Scholar 

  • 42.

    Korhonen, J. Long-term changes in lake ice cover in Finland. Nord. Hydrol. 37, 347–363 (2006).

    Article  Google Scholar 

  • 43.

    Venäläinen, A., Pirinen, H., Tuomenvirta, P. & Drebs, A. A basic Finnish climate data set 1961–2000. Finn. Meteorol. Inst. Rep. 5, 1–25 (2005).

    Google Scholar 

  • 44.

    Brown, P. W. & Fredrickson, L. H. Food habits of breeding white-winged scoters. Can. J. Zool. 64, 1652–1654 (1986).

    Article  Google Scholar 

  • 45.

    Afton, A. D., Hier, R. H. & Paulus, S. L. Lesser scaup diets during migration and winter in the Mississippi Flyway. Can. J. Zool. 69, 328–333 (1991).

    Article  Google Scholar 

  • 46.

    Fast, P. L., Clark, R. G., Brook, R. W. & Hines, J. E. Patterns of wetland use by brood-rearing lesser scaup in northern boreal forest of Canada. Waterbirds 27, 177–182 (2004).

    Article  Google Scholar 

  • 47.

    Van de Pol, M. & Wright, J. A. simple method for distinguishing within-versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).

    Article  Google Scholar 

  • 48.

    Afton, A. D. Influence of age and time on reproductive performance of female Lesser Scaup. Auk 101, 255–265 (1984).

    Article  Google Scholar 

  • 49.

    Rohwer, F. C. The evolution of reproductive patterns in waterfowl. In Ecology and Management of Breeding Waterfowl (eds Batt, B. et al.) 486–539 (University of Minnesota Press, Minnesota, 1992).

    Google Scholar 

  • 50.

    Milonoff, M., Pöysä, H. & Runko, P. Reproductive performance of common goldeneye Bucephala clangula females in relation to age and lifespan. Ibis 144, 585–592 (2002).

    Article  Google Scholar 

  • 51.

    Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. 85, 935–956 (2002).

    Google Scholar 

  • 52.

    Wolak, M. E., Fairbairn, D. J. & Paulsen, Y. R. Guidelines for estimating repeatability. Methods Ecol. Evol. 3, 129–137 (2012).

    Article  Google Scholar 

  • 53.

    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).

    Article  Google Scholar 

  • 54.

    Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    R Core Team. R: A language and environment for statistical computing. https://www.r-project.org (2019).

  • 56.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Startup empowers women to improve access to safe drinking water

    Multifaceted characteristics of dryland aridity changes in a warming world