Jiang, Y., Bolnick, D. I. & Kirkpatrick, M. Assortative mating in animals. Am. Nat. 181, E125–E138. https://doi.org/10.1086/670160 (2013).
Cooke, F., Finney, G. H. & Rockwell, R. F. Assortative mating in lesser snow geese (Anser caerulescens). Behav. Genet. 6, 127–140 (1976).
Otronen, M. Size assortative mating in the yellow dung fly Scatophaga stercoraria. Behavior 126, 63–76 (1993).
Wang, D. et al. Scrutinizing assortative mating in birds. PLoS Biol. 17, e3000156. https://doi.org/10.1371/journal.pbio.3000156 (2019).
Sin, Y. W. et al. MHC class II-assortative mate choice in European badgers (Meles meles). Mol. Ecol. 24, 3138–3150. https://doi.org/10.1111/mec.13217 (2015).
Angelier, F., Weimerskirch, H., Barbraud, C. & Chastel, O. Is telomere length a molecular marker of individual quality? Insights from a long‐lived bird. Funct. Ecol. https://doi.org/10.1111/1365-2435.13307 (in press).
Monaghan, P. Organismal stress, telomeres and life histories. J. Exp. Biol. 217, 57–66. https://doi.org/10.1242/jeb.090043 (2014).
Bronikowski, A. M. The evolution of aging phenotypes in snakes: a review and synthesis with new data. Age 30, 169–176. https://doi.org/10.1007/s11357-008-9060-5 (2008).
Tricola, G. et al. The rate of telomere loss is related to maximum lifespan in birds. Philos. Trans. R. Soc. B 373, 20160445. https://doi.org/10.1098/rstb.2016.0445 (2018).
Young, R. C. et al. Age, sex, and telomere dynamics in a long-lived seabird with male-biased parental care. PLoS ONE 8, e74931. https://doi.org/10.1371/journal.pone.0074931 (2013).
Sudyka, J., Arct, A., Drobniak, S. M., Gustafsson, L. & Cichon, M. Birds with high lifetime reproductive success experience increased telomere loss. Biol. Lett. 15, 20180637. https://doi.org/10.1098/rsbl.2018.0637 (2019).
Parolini, M. et al. Telomere length is reflected by plumage coloration and predicts seasonal reproductive success in the barn swallow. Mol. Ecol. 26, 6100–6109. https://doi.org/10.1111/mec.14340 (2017).
Le Vaillant, M. et al. Telomere length reflects individual quality in free-living adult king penguins. Polar Biol. 38, 2059–2067. https://doi.org/10.1007/s00300-015-1766-0 (2015).
Salomons, H. M. et al. Telomere shortening and survival in free-living corvids. Proc. R. Soc. B 276, 3157–3165. https://doi.org/10.1098/rspb.2009.0517 (2009).
Salmón, P., Nilsson, J. F., Watson, H., Bensch, S. & Isaksson, C. Selective disappearance of great tits with short telomeres in urban areas. Proc. R. Soc. B 284, 20171349. https://doi.org/10.1098/rspb.2017.1349 (2017).
Cerchiara, J. A. et al. Magellanic penguin telomeres do not shorten with age with increased reproductive effort, investment, and basal corticosterone. Ecol. Evol. 7, 5682–5691. https://doi.org/10.1002/ece3.3128 (2017).
Aabye, I. Telomere length does not correlate with individual quality in a population of blue tits (Cyanistes caeruleus) Masters thesis, University of Oslo, (2017).
Caprioli, M. et al. Nestling telomere length does not predict longevity, but covaries with adult body size in wild barn swallows. Biol. Lett. 9, 20130340. https://doi.org/10.1098/rsbl.2013.0340 (2013).
Bauch, C., Becker, P. H. & Verhulst, S. Telomere length reflects phenotypic quality and costs of reproduction in a long-lived seabird. Proc. R. Soc. B 280, 20122540. https://doi.org/10.1098/rspb.2012.2540 (2013).
Monaghan, P. Telomeres and life histories: the long and the short of it. Ann. N. Y. Acad. Sci. 1206, 130–142. https://doi.org/10.1111/j.1749-6632.2010.05705.x (2010).
Haussmann, M. F. & Heidinger, B. J. Telomere dynamics may link stress exposure and ageing across generations. Biol. Lett. 11, 20150396. https://doi.org/10.1098/rsbl.2015.0396 (2015).
Giraudeau, M., Angelier, F. & Sepp, T. Do telomeres influence pace-of-life-strategies in response to environmental conditions over a lifetime and between generations?. BioEssays https://doi.org/10.1002/bies.201800162 (2019).
Young, A. J. The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing. Philos. Trans. R. Soc. B 373, 20160452. https://doi.org/10.1098/rstb.2016.0452 (2018).
Olsson, M., Wapstra, E. & Friesen, C. R. Evolutionary ecology of telomeres: a review. Ann. N. Y. Acad. Sci. 1422, 5–28. https://doi.org/10.1111/nyas.13443 (2018).
Schull, Q. et al. Assortative pairing by telomere length in king penguins and relationships with breeding success. Can. J. Zool. 96, 639–647. https://doi.org/10.1139/cjz-2017-0094 (2018).
Belmaker, A. The role of telomere length in the life history and behavior of Tree Swallows (Tachycineta bicolor) PhD thesis, Cornell University, (2016).
Johnsen, A., Pauliny, A., Lifjeld, J. T. & Blomqvist, D. Is telomere length associated with mate choice in a songbird with a high rate of extrapair paternity?. PLoS ONE 12, e0182446. https://doi.org/10.1371/journal.pone.0182446 (2017).
Khoriauli, L. et al. Assortative mating for telomere length and antioxidant capacity in barn swallows (Hirundo rustica). Behav. Ecol. Sociobiol. 71, 124. https://doi.org/10.1007/s00265-017-2352-y (2017).
Broer, L. et al. Meta-analysis of telomere length in 19 713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur. J. Hum. Genet. 21, 1163–1168. https://doi.org/10.1038/ejhg.2012.303 (2013).
Burley, N. Parental investment, mate choice, and mate quality. Proc. Natl. Acad. Sci. USA 74, 3476–3479 (1977).
Guerra, M. & Drummond, H. Reversed sexual size dimorphism and parental care: minimal division of labour in the blue-footed booby. Behaviour 132, 479–496 (1995).
Torres, R. & Velando, A. A dynamic trait affects continuous pair assessment in the blue-footed booby Sula nebouxii. Behav. Ecol. Sociobiol. 55, 65–72. https://doi.org/10.1007/s00265-003-0669-1 (2003).
Torres, R. & Velando, A. Male preference for female foot colour in the socially monogamous blue-footed booby Sula nebouxii. Anim. Behav. 69, 59–65. https://doi.org/10.1016/j.anbehav.2004.03.008 (2005).
Sánchez-Macouzet, O. Monogamia serial y fidelidad en el bobo de patas azules PhD thesis, Universidad Nacional Autónoma de México, (2017).
Drummond, H. & Rodríguez, C. Viability of booby offspring is maximized by having one young parent and one old parent. PLoS ONE 10, e0133213. https://doi.org/10.1371/journal.pone.0133213 (2015).
Nelson, J. B. Pelicans, Cormorants, and their Relatives: The Pelecaniformes Vol. 661 (Oxford University Press, 2006).
Torres, R. & Velando, A. Male reproductive senescence: the price of immune-induced oxidative damage on sexual attractiveness in the blue-footed booby. J. Anim. Ecol. 76, 1161–1168. https://doi.org/10.1111/j.1365-2656.2007.01282.x (2007).
Velando, A., Beamonte-Barrientos, R. & Torres, R. Pigment-based skin colour in the blue-footed booby: an honest signal of current condition used by females to adjust reproductive investment. Oecologia 149, 535–542. https://doi.org/10.1007/s00442-006-0457-5 (2006).
Torres, R. & Velando, A. in Advances in the Study of Behavior Vol. 42: Behavioral ecology of tropical animals (ed Regina Macedo) 155–188 (2010).
Kiere, L. M. & Drummond, H. Extrapair behaviour reveals flexible female choosiness and mixed support for classic good genes in blue-footed boobies. Anim. Behav. 95, 145–153. https://doi.org/10.1016/j.anbehav.2014.07.007 (2014).
Noguera, J. C., Metcalfe, N. B., Boner, W. & Monaghan, P. Sex-dependent effects of nutrition on telomere dynamics in zebra finches (Taeniopygia guttata). Biol. Lett. 11, 20140938. https://doi.org/10.1098/rsbl.2014.0938 (2015).
Tarry-Adkins, J. L. & Ozanne, S. E. The impact of early nutrition on the aging trajectory. Proc. Nutr. Soc. 73, 289–301. https://doi.org/10.1017/S002966511300387X (2014).
Taff, C. C. & Freeman-Gallant, C. R. Sexual signals reflect telomere dynamics in a wild bird. Ecol. Evol. 7, 3436–3442. https://doi.org/10.1002/ece3.2948 (2017).
Holveck, M.-J. & Riebel, K. Low-quality females prefer low-quality males when choosing a mate. Proc. R. Soc. B 277, 153–160. https://doi.org/10.1098/rspb.2009.1222 (2010).
Ratikainen, I. I. & Kokko, H. Differential allocation and compensation: Who deserves the silver spoon?. Behav. Ecol. 21, 195–200. https://doi.org/10.1093/beheco/arp168 (2010).
Sheldon, B. C. Differential allocation: tests, mechanisms and implications. Trends Ecol. Evol. 15, 397–402 (2000).
Lessells, C. K. M. & McNamara, J. M. Sexual conflict over parental investment in repeated bouts: negotiation reduces overall care. Proc. R. Soc. B 279, 1506–1514 (2012).
Slagsvold, T. & Lifjeld, J. T. Hatching asynchrony in birds: the hypothesis of sexual conflict over parental investment. Am. Nat. 134, 239–253 (1989).
Kokko, H. Good genes, old age and life-history trade-offs. Evol. Ecol. 12, 739–750 (1998).
Kokko, H. & Lindstrom, J. Evolution of female preference for old mates. Proc. R. Soc. B 263, 1533–1538. https://doi.org/10.1098/rspb.1996.0224 (1996).
Ramos, A. G. et al. Interactive effects of male and female age on extra-pair paternity in a socially monogamous seabird. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-014-1769-9 (2014).
Drummond, H., Torres, R. & Krishnan, V. V. Buffered development: resilience after aggressive subordination in infancy. Am. Nat. 161, 794–807. https://doi.org/10.1086/375170 (2003).
Beamonte-Barrientos, R., Velando, A., Drummond, H. & Torres, R. Senescence of maternal effects: aging influences egg quality and rearing capacities of a long-lived bird. Am. Nat. https://doi.org/10.1086/650726 (2010).
Kim, S.-Y., Torres, R., Domínguez, C. A. & Drummond, H. Lifetime philopatry in the blue-footed booby: a longitudinal study. Behav. Ecol. 18, 1132–1138. https://doi.org/10.1093/beheco/arm091 (2007).
Osorio-Beristain, M. & Drummond, H. Natal dispersal and deferred breeding in the blue-footed booby. Auk 110, 234–239 (1993).
Ramos, A. G. et al. Habitat structure and colony structure constrain extrapair paternity in a colonial bird. Anim. Behav. 95, 121–127. https://doi.org/10.1016/j.anbehav.2014.07.003 (2014).
Gaunt, A. S. et al. Guidelines to the use of wild birds in research (The Ornithological Counciil, 1999).
Merkling, T. et al. Food availability and offspring sex in a monogamous seabird: insights from an experimental approach. Behav. Ecol. 23, 751–758. https://doi.org/10.1093/beheco/ars023 (2012).
Cawthon, R. M. Telomere measurement by quantitative PCR. Nucleic Acids Res. https://doi.org/10.1093/nar/30.10.e47 (2002).
Foote, C. G. Avian Telomere Dynamics Ph.D. thesis, University of Glasgow, (2008).
Morinha, F., Magalhães, P. & Blanco, G. Standard guidelines for the publication of telomere qPCR results in evolutionary ecology. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13152 (in press).
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 29, e45 (2001).
R: A language and environment for statistical computing v. 3.5.0 (Vienna, Austria, 2020).
nlme: Linear and Nonlinear Mixed Effects Models (2011).
Verhulst, S. Improving comparability between qPCR-based telomere studies. Mol. Ecol. Resour. 20, 11–13. https://doi.org/10.1111/1755-0998.13114 (2020).
Source: Ecology - nature.com