in

Malaria trends in Ethiopian highlands track the 2000 ‘slowdown’ in global warming

  • 1.

    Pascual, M., Ahumada, J., Chaves, L. F., Rodó, X. & Bouma, M. Malaria resurgence in East African Highlands: temperature trends revisited. Proc. Natl Acad. Sci. USA 103, 5829–5834 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Alonso, D., Bouma, M. J. & Pascual, M. Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proc. Roy. Soc. B Biol. Sci. 278, 1661–1669 (2011).

    Google Scholar 

  • 3.

    Stern, D. I. et al. Temperature and malaria trends in highland East Africa. PLoS ONE 6, e24524 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Chaves, L. F. & Koenraadt, C. J. M. Climate change and highland malaria: fresh air for a hot debate. Quart. Rev. Biol. 85, 27–55 (2010).

    PubMed  Article  Google Scholar 

  • 5.

    Shanks, G. D., Hay, S. I., Omumbo, J. A. & Snow, R. W. Malaria in Kenya’s Western Highlands. Emerg. Infect. Dis. 11, 1425–1432 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Omumbo, J. A., Lyon, B., Waweru, S. M., Connor, S. J. & Thomson, M. C. Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate. Mal. J. 10, 12 (2011).

    Article  Google Scholar 

  • 7.

    Siraj, A. S. et al. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343, 1154–1158 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 8.

    Caminade, C. et al. Climate change and malaria: model intercomparison. Proc. Natl Acad. Sci. USA 111, 3286–3291 (2014).

  • 9.

    Mordecai, E. A. et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Shapiro, L. L. M., Whitehead, S. A. & Thomas, M. B. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 15, e2003489 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 11.

    Waite, J. L., Suh, E., Lynch, P. A., & Thomas, M. B. Exploring the lower thermal limits for development of the human malaria parasite, Plasmodium falciparum. Biol. Lett. 15, 20190275 (2019).

  • 12.

    Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. & Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J. Geophys. Res. Atmos. 111, D12106 (2006).

    ADS  Article  Google Scholar 

  • 13.

    Kerr, R. What happened to global warming? Scientists say just wait a bit. Science 326, 28–29 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 14.

    Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Change 1, 360–364 (2011).

    ADS  Article  Google Scholar 

  • 15.

    Stocker, T. F. et al (eds). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 153 (2013).

  • 16.

    Otto, O. et al. Energy budget constraints on climate response. Nat. Geosc. 6, 415–416 (2013).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Fyfe, J. C., Gillett, N. P. & Zwiers, F. W. Overestimated global warming over the past 20 years. Nat. Clim. Change 3, 767–769 (2013).

    ADS  Article  Google Scholar 

  • 18.

    Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Santer et al. Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosc. 7, 185–189 (2014).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Trenberth, K. & Fasullo, J. An apparent hiatus in global warming? Earth’s Future 1, 19–32 (2013).

    ADS  Article  Google Scholar 

  • 21.

    Smith, D. Has global warming stalled? Nat. Clim. Change 3, 618–619 (2013).

    ADS  Article  Google Scholar 

  • 22.

    Guemas, V., Doblas-Reyes, F. J., Andreu-Burillo, I. & Asif, M. Retrospective prediction of the global warming slowdown in the past decade. Nat. Clim. Change 3, 649–653 (2013).

    ADS  Article  Google Scholar 

  • 23.

    Chen, X. & Tung, K.-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345, 897–903 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 24.

    Boykoff, M. Media discourse on the climate slowdown. Nat. Clim. Change 4, 156–158 (2014).

    ADS  Article  Google Scholar 

  • 25.

    Hawkins, E., Edwards, T. & McNeall, D. Pause for thought. Nat. Clim. Change 4, 154–156 (2014).

    ADS  Article  Google Scholar 

  • 26.

    England, M. H. et al. Recent intensification of wind-driven circulation in the pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

    ADS  Article  Google Scholar 

  • 27.

    Karl, T. R. et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348, 1469–1472 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 28.

    Cowtan et al. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophys. Res. Lett. 42, https://doi.org/10.1002/2015GL064888 (2015).

  • 29.

    Cohen, J. L., Furtado, J. C., Barlow, M., Alexeev, V. A. & Cherry, J. E. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 39, L22705 (2012).

    Google Scholar 

  • 30.

    Medhaug, I., Stolpe, M. B., Fischer, E. M. & Knutti, R. Reconciling controversies about the ‘global warming hiatus’. Nature 545, 41–47 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 31.

    Balmaseda, M. A., Trenberth, K. E. & Källén, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–175928 (2013).

    ADS  Article  Google Scholar 

  • 32.

    Wills, R. C., Schneider, T., Wallace, J. M., Battisti, D. S. & Hartmann, D. L. Disentangling global warming, multidecadal variability, and El Niño in Pacific temperatures. Geophys. Res. Lett. 45, 2487–249 (2018).

    ADS  Article  Google Scholar 

  • 33.

    Cai, W. et al. Pantropical climate interactions. Science 363, eaav4236 (2019).

  • 34.

    Aregawi, M. et al. Time series analysis of trends in malaria cases and deaths at hospitals and the effect of antimalarial interventions, 2001–2011, Ethiopia. PLoS ONE 9, e106359 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Taffese, H. S. et al. Malaria epidemiology and interventions in Ethiopia from 2001 to 2016. Infect. Dis. Poverty 7, 103 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Vautard, R., Yiou, P. & Ghil, M. Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Phys. D 58, 95–126 (1992).

    Article  Google Scholar 

  • 37.

    Ghil, M. et al. Advanced spectral methods for climatic time series. Rev. Geophys. 40, 1–41 (2002).

    Article  Google Scholar 

  • 38.

    Harris, T. J. & Yuan, H. Filtering and frequency interpretations of singular spectrum analysis. Phys. D 239, 1958–1967 (2010).

    MathSciNet  CAS  MATH  Article  Google Scholar 

  • 39.

    Anyamba, A., Tucker, C. J. & Eastman, J. R. NDVI anomaly patterns over Africa during the 1997/1998 ENSO warm event. Int. J. Rem. Sens. 22, 1847–1859 (2001).

    Article  Google Scholar 

  • 40.

    Nicholson, S. E. & Kim, J. The relationship of the El Niño Southern oscillation to African rainfall. Int. J. Climatol. 17, 117–135 (1997).

    Article  Google Scholar 

  • 41.

    Reason, C. J. C. & Rouault, M. ENSO-like decadal variability and South African rainfall. Geophys. Res. Lett. 29, 1638 (2002).

    ADS  Article  Google Scholar 

  • 42.

    Rodó, X. Reversal of three global atmospheric fields linking changes in SST anomalies in the Pacific, Atlantic and Indian ocean at tropical latitudes and midlatitudes. Clim. Dyn. 18, 203–217 (2001).

    Article  Google Scholar 

  • 43.

    Rodó, X., Pascual, M., Fuchs, G. & Faruque, A. S. G. ENSO and cholera: A nonstationary link related to climate change? Proc. Natl Acad. Sci. USA 99, 12901–12906 (2002).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 44.

    Saji, N. et al. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    ADS  CAS  PubMed  Google Scholar 

  • 45.

    Neale, R. B. et al. Description of the NCAR Community Atmosphere Model (CAM 5.0), NCAR/TN-486+STR. http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf (2012).

  • 46.

    Shanks, D., Hay, S., Stern, D., Biomndo, K. & Snow, R. Meteorologic Influences on Plasmodium falciparum malaria in the highland tea estates of Kericho, Western Kenya. Emerg. Infect. Dis. 12, 1404–1408 (2002).

    Article  Google Scholar 

  • 47.

    Negash, et al. Malaria Epidemics in the Highlands of Ethiopia. East Afr. Med. J. 82, https://doi.org/10.4314/eamj.v82i4.9279 (2005).

  • 48.

    Taffese, H. S. et al. Malaria epidemiology and interventions in Ethiopia from 2001 to 2016. Infect. Dis. Poverty 7, 103 (2018).

  • 49.

    Fetene, et al. The Ethiopian health extension program and variation in health systems performance: what matters? PLoS ONE 11, e0156438 (2016).

  • 50.

    PMI, Presidents Malaria Initiative. Ethiopia, Malaria Operational Plan FY, 2018. https://www.pmi.gov/docs/default-source/default-document-library/malaria-operational-plans/fy-2018/fy-2018-ethiopia-malaria-operational-plan.pdf?sfvrsn=5 (2018).

  • 51.

    Aregawi, et al. Time series analysis of trends in malaria cases and deaths at hospitals and the effect of antimalarial interventions, 2001–2011, Ethiopia. PLoS ONE 9, e106359 (2014).

  • 52.

    Roy, M., Bouma, M. J., Ionides, E. L., Dhiman, R. C. & Pascual, M. The potential elimination of Plasmodium vivax malaria by relapse treatment: insights from a transmission model and surveillance data from NW India. PLoS Negl. Trop. Dis. 7, 1–10 (2013).

    Article  Google Scholar 

  • 53.

    Rhein, M., Rintoul, S. R., & Aoki, S. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of The Intergovernmental Panel on Climate Change (2013).

  • 54.

    Roxy, M. K., Ritika, K., Terray, P. & Masson, S. The curious case of Indian Ocean Warming. J. Clim. 27, 8501–8509 (2014).

    ADS  Article  Google Scholar 

  • 55.

    Diro, G. T. DiroD., Grimes, I. F. & Black, E. Teleconnections between Ethiopian summer rainfall and sea surface temperature: Part I-observation and modelling. Clim. Dyn. 37, 103–119 (2010).

    Article  Google Scholar 

  • 56.

    Beltrando, G. & Camberlin, P. Interannual variability of rainfall in the eastern horn of Africa and indicators of atmospheric circulation. Int. J. Climatol. 13, 533–546 (1993).

    Article  Google Scholar 

  • 57.

    Gissila, T., Black, E., Grimes, E., & Slingo, J. M. Seasonal forecasting of the Ethiopian Summer rains. Int. J. Climatol. 24, https://doi.org/10.1002/joc.1078. (2004).

  • 58.

    Hansen, J., Sato, M., Kharecha, P. & von Schuckmann, K. Earth’s energy imbalance and implications. Atmos. Chem. Phys. 11, 13421–13449 (2011).

    ADS  CAS  Article  Google Scholar 

  • 59.

    Korecha, D. & Barnston, A. G. Predictability of June-September Rainfall in Ethiopia. Monthly Weather Rev. 135, 628–650 (2007).

    ADS  Article  Google Scholar 

  • 60.

    Funk, C. et al. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Nat. Acad. Sci. USA 105, 11081–11086 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 61.

    Williams, A. P. & Funk, C. A. Westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Clim. Dyn. 37, 2417–2435 (2011).

    Article  Google Scholar 

  • 62.

    Hoell, A., Hoerling, M., Eischeid, Quan, X., & Liebmann, B. Reconciling Theories for Human and Natural Attribution of Recent East Africa Drying. J. Clim. 30, https://doi.org/10.1175/JCLI-D-16-0558.1. (2016).

  • 63.

    Kucharski, F., Kang, I. S., Farneti, R. & Feudale, L. Tropical Pacific response to 20th century Atlantic warming. Geophys. Res. Lett. 38, L03702 (2011).

    ADS  Article  Google Scholar 

  • 64.

    Kug, J.-S. & Kang, I.-S. Interactive feedback between ENSO and the Indian Ocean. J. Clim. 19, 1784–1801 (2006).

    ADS  Article  Google Scholar 

  • 65.

    Luo, J.-J., Sasaki, W. & Masumoto, Y. Indian Ocean warming modulates Pacific climate change. Proc. Natl Acad. Sci. USA 109, 18 701–18 706 (2012).

    CAS  Article  Google Scholar 

  • 66.

    Meyrowitsch, D. W. et al. Is the current decline in malaria burden in sub-Saharan Africa due to a decrease in vector population? Malar. J. 10, 188 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Baeza, A., Bouma, M. J., Dhiman, R. & Pascual., M. Malaria control under unstable dynamics: reactive vs. climate-based strategies. Acta Trop. Spec. Sect. Hum. Infect. Dis. Environ. Chang. 129, 42–51 (2014).

    Google Scholar 

  • 68.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  • 69.

    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Met. Soc. 77, 437–471 (1996).

    ADS  Article  Google Scholar 

  • 70.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  • 71.

    Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & R., C. Francis A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Met. Soc. 78, 1069–1079 (1997).

    ADS  Article  Google Scholar 

  • 72.

    Thomson, D. J. Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–1096 (1982).

    ADS  Article  Google Scholar 

  • 73.

    Percival, D. B., and Walden, A. T. Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques (1993).

  • 74.

    Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Section 13.4.3. Multitaper Methods and Slepian Functions, Numerical Recipes: The Art of Scientific Computing 3rd edn. (2007).

  • 75.

    Rodríguez-Arias, M. A. & Rodó, X. A primer on the study of transitory dynamics in ecological series using the scale-dependent correlation analysis. Oecologia 138, 485–504 (2004).

    ADS  PubMed  Article  Google Scholar 

  • 76.

    Rodó, X. & Rodríguez-Arias, M. A. A new method to detect transitory signatures and local time/space variability structures in the climate system: the scale-dependent correlation analysis. Clim. Dyn. 27, 441–458 (2006).

    Article  Google Scholar 

  • 77.

    Laneri, K. et al. Forcing versus feedback: epidemic malaria and monsoon rains in northwest India. PLoS Comput. Biol. 6, e1000898 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 78.

    Laneri, K. et al. Dynamical malaria models reveal how immunity buffers effect of climate variability. Proc. Nat. Acad. Sci. USA 112, 8786–8791 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 79.

    Roy, M., Bouma, M., Dhiman, R. C. & Pascual, M. Predictability of epidemic malaria under non-stationary conditions with process-based models combining epidemiological updates and climate variability. Malar. J. 14, 1 (2015).

    Article  CAS  Google Scholar 

  • 80.

    Ionides, E., Bretó, C. & King, A. Inference for nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 103, 18438–18443 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 81.

    King, A., Nguyen, D. & Ionides, E. Statistical inference for partially observed Markov processes via the R package pomp. J. Stat. Softw. 69, 1–43 (2016).

    Article  Google Scholar 

  • 82.

    Hurrell, J. W., Hack, J., Shea, D., Caron, J. & Rosinski, J. A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J. Clim. 21, 5145–5153 (2008).

    ADS  Article  Google Scholar 

  • 83.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Clim. Change https://doi.org/10.1007/s10584-011-0156-z (2011).

  • 84.

    Cionni et al. Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing. Atmos. Chem. Phys. 11, 11267–11292 (2011).

    ADS  CAS  Article  Google Scholar 

  • 85.

    Lamarque et al. CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geophys. Mod. Dev. 5, 369–411 (2012).

    Article  Google Scholar 

  • 86.

    Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010). Open-file report 2011-1073 (2011).


  • Source: Ecology - nature.com

    3 Questions: Claude Grunitzky MBA '12 on launching TRUE Africa University

    A multifaceted approach to understanding bat community response to disturbance in a seasonally dry tropical forest